File size: 6,204 Bytes
3851bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
language:
- he
license: apache-2.0
base_model: openai/whisper-medium
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
- precision
- recall
- f1
model-index:
- name: he
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# he

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1138
- Wer: 9.9943
- Precision: 0.8917
- Recall: 0.8913
- F1: 0.8914
- Precision Median: 1.0
- Recall Median: 1.0
- F1 Median: 1.0
- Precision Max: 1.0
- Recall Max: 1.0
- F1 Max: 1.0
- Precision Min: 0.0
- Recall Min: 0.0
- F1 Min: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     | Precision | Recall | F1     | Precision Median | Recall Median | F1 Median | Precision Max | Recall Max | F1 Max | Precision Min | Recall Min | F1 Min |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:---------:|:------:|:------:|:----------------:|:-------------:|:---------:|:-------------:|:----------:|:------:|:-------------:|:----------:|:------:|
| 0.2168        | 0.04  | 500   | 0.2124          | 27.7691 | 0.6808    | 0.7027 | 0.6909 | 0.8125           | 0.8462        | 0.8276    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.1421        | 0.08  | 1000  | 0.1752          | 21.5191 | 0.7794    | 0.7820 | 0.7803 | 0.8889           | 0.8947        | 0.8947    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.086         | 0.12  | 1500  | 0.1510          | 17.9741 | 0.8044    | 0.8044 | 0.8040 | 0.9231           | 0.9231        | 0.9167    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0822        | 0.16  | 2000  | 0.1357          | 17.1839 | 0.8070    | 0.8091 | 0.8078 | 0.9231           | 0.9231        | 0.9231    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0675        | 0.2   | 2500  | 0.1227          | 14.9416 | 0.8324    | 0.8320 | 0.8319 | 0.9333           | 0.9333        | 0.9333    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0583        | 0.24  | 3000  | 0.1224          | 14.0376 | 0.8528    | 0.8498 | 0.8510 | 0.9333           | 0.9333        | 0.9375    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0528        | 0.28  | 3500  | 0.1167          | 13.8667 | 0.8393    | 0.8410 | 0.8399 | 0.9333           | 0.9333        | 0.9333    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0431        | 0.32  | 4000  | 0.1173          | 13.3827 | 0.8546    | 0.8579 | 0.8560 | 0.9375           | 0.9412        | 0.9412    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0402        | 0.36  | 4500  | 0.1154          | 12.1654 | 0.8695    | 0.8703 | 0.8697 | 0.9412           | 0.9412        | 0.9444    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0385        | 0.4   | 5000  | 0.1173          | 11.9448 | 0.8593    | 0.8578 | 0.8584 | 0.9444           | 0.9444        | 0.9474    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0266        | 0.44  | 5500  | 0.1144          | 12.1014 | 0.8706    | 0.8732 | 0.8717 | 0.9474           | 0.95          | 0.9583    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.021         | 0.48  | 6000  | 0.1161          | 11.7099 | 0.8737    | 0.8744 | 0.8739 | 1.0              | 1.0           | 0.9706    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0228        | 0.52  | 6500  | 0.1109          | 10.9909 | 0.8685    | 0.8692 | 0.8687 | 1.0              | 1.0           | 0.9697    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0172        | 0.56  | 7000  | 0.1075          | 10.7702 | 0.8780    | 0.8793 | 0.8784 | 1.0              | 0.9545        | 0.9697    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0117        | 0.6   | 7500  | 0.1107          | 10.4356 | 0.8834    | 0.8825 | 0.8828 | 1.0              | 1.0           | 1.0       | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0151        | 0.64  | 8000  | 0.1101          | 10.3146 | 0.8886    | 0.8899 | 0.8891 | 1.0              | 1.0           | 0.9744    | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0136        | 0.68  | 8500  | 0.1079          | 10.0370 | 0.8895    | 0.8903 | 0.8897 | 1.0              | 1.0           | 1.0       | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0135        | 0.72  | 9000  | 0.1112          | 9.9445  | 0.8892    | 0.8892 | 0.8891 | 1.0              | 1.0           | 1.0       | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0084        | 0.76  | 9500  | 0.1136          | 9.8875  | 0.8967    | 0.8964 | 0.8964 | 1.0              | 1.0           | 1.0       | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |
| 0.0098        | 0.8   | 10000 | 0.1138          | 9.9943  | 0.8917    | 0.8913 | 0.8914 | 1.0              | 1.0           | 1.0       | 1.0           | 1.0        | 1.0    | 0.0           | 0.0        | 0.0    |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0