File size: 3,010 Bytes
a790d79 26d0272 a790d79 98dbd5e 26d0272 a790d79 26d0272 a790d79 98dbd5e 26d0272 98dbd5e 26d0272 98dbd5e 26d0272 a790d79 de498de a790d79 0b9b647 a790d79 52f2f02 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
language:
- en
license: mit
tags:
- generated_from_trainer
- nlu
- intent-classification
datasets:
- AmazonScience/massive
metrics:
- accuracy
- f1
base_model: xlm-roberta-base
model-index:
- name: xlm-r-base-amazon-massive-intent
results:
- task:
type: intent-classification
name: intent-classification
dataset:
name: MASSIVE
type: AmazonScience/massive
split: test
metrics:
- type: f1
value: 0.8775
name: F1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-r-base-amazon-massive-intent
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on
[Amazon Massive](https://huggingface.co/datasets/AmazonScience/massive) dataset (only en-US subset).
It achieves the following results on the evaluation set:
- Loss: 0.5439
- Accuracy: 0.8775
- F1: 0.8775
## Results
| domain | train-accuracy | test-accuracy |
|:------:|:--------------:|:-------------:|
|alarm|0.967|0.9846|
|audio|0.7458|0.659|
|calendar|0.9797|0.3181|
|cooking|0.9714|0.9571|
|datetime|0.9777|0.9402|
|email|0.9727|0.9296|
|general|0.8952|0.5949|
|iot|0.9329|0.9122|
|list|0.9792|0.9538|
|music|0.9355|0.8837|
|news|0.9607|0.8764|
|play|0.9419|0.874|
|qa|0.9677|0.8591|
|recommendation|0.9515|0.8764|
|social|0.9671|0.8932|
|takeaway|0.9192|0.8478|
|transport|0.9425|0.9193|
|weather|0.9895|0.93|
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 2.734 | 1.0 | 720 | 1.1883 | 0.7196 | 0.7196 |
| 1.2774 | 2.0 | 1440 | 0.7162 | 0.8342 | 0.8342 |
| 0.6301 | 3.0 | 2160 | 0.5817 | 0.8672 | 0.8672 |
| 0.4901 | 4.0 | 2880 | 0.5555 | 0.8770 | 0.8770 |
| 0.3398 | 5.0 | 3600 | 0.5439 | 0.8775 | 0.8775 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.5.1
- Tokenizers 0.12.1
## Citation
```bibtex
@article{kubis2023back,
title={Back Transcription as a Method for Evaluating Robustness of Natural Language Understanding Models to Speech Recognition Errors},
author={Kubis, Marek and Sk{\'o}rzewski, Pawe{\l} and Sowa{\'n}ski, Marcin and Zi{\k{e}}tkiewicz, Tomasz},
journal={arXiv preprint arXiv:2310.16609},
year={2023}
eprint={2310.16609},
archivePrefix={arXiv},
}
``` |