File size: 2,187 Bytes
dee2cfc
36202cf
 
 
 
 
 
 
 
 
 
dee2cfc
9b5ae34
dee2cfc
b5ef005
dee2cfc
9b5ae34
dee2cfc
781e6f6
 
 
dee2cfc
781e6f6
 
 
 
 
 
 
dee2cfc
4f1e798
dee2cfc
781e6f6
dee2cfc
781e6f6
dee2cfc
781e6f6
dee2cfc
5776571
 
781e6f6
 
dee2cfc
5d2ce2d
 
dee2cfc
 
781e6f6
dee2cfc
781e6f6
dee2cfc
781e6f6
 
dee2cfc
5d2ce2d
9b5ae34
781e6f6
dee2cfc
781e6f6
dee2cfc
781e6f6
dee2cfc
781e6f6
dee2cfc
781e6f6
dee2cfc
 
781e6f6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

---
license: apache-2.0
datasets:
- oscar-corpus/OSCAR-2109
language:
- en
- el
pipeline_tag: text-generation
library_name: transformers
---

# B-GPT_en_el_sequential

This is a bilingual GPT-2 style model. For the first half of training, this model was trained only on English data. In the second half of training, the model was trained on only Greek data. At the end of training, 50% of training data seen by the model is English and 50% is Greek. The tokenizer was trained on the same overall proportions of data as the language model at the final step. 

## Model details:

All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
Details for this model specifically:

* Architecture: gpt2
* Parameters: 124770816
* Maximum sequence length: 512 tokens
* Training tokens: 12B
* Vocabulary size: 50000
* Compute cost: ~9 NVIDIA A6000 GPU hours
* CO2 Emission: 1.17 kg

Training dataset: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)

Checkpoints are taken at training steps: 0, 10000, 20000, 30000, 40000, 50000, 64000, 64010, 64020, 64030, 64040, 64050, 64060, 64070, 64080, 64090, 64100, 64110, 64120, 64130, 64140, 64150, 64160, 64170, 64180, 64190, 64200, 64300, 64400, 64500, 64600, 64700, 64800, 64900, 65000, 66000, 67000, 68000, 69000, 70000, 80000, 90000, 100000, 110000, 120000, 128000.

## Use This Model

Load the model:

Note: if you do not specify a revision, it will load the final checkpoint of the model. See above for the list of checkpoints. The checkpoint step is the name of the revision.

```
from transformers import AutoTokenizer, AutoModel

tokenizer = AutoTokenizer.from_pretrained("catherinearnett/B-GPT_en_el_sequential")
model = AutoModel.from_pretrained("catherinearnett/B-GPT_en_el_sequential", revision = "128000")


````

Text Generation:

```
from transformers import pipeline

pipe = pipeline("text-generation", model="catherinearnett/B-GPT_en_el_sequential")
    
pipe("I am a")

```

## Citation

If you use this model, please cite:

```


```