File size: 8,044 Bytes
06f65a8 4bb4ba2 4758624 de96751 4758624 06f65a8 525a0f1 be96997 525a0f1 be96997 525a0f1 be96997 8b2928c 525a0f1 ef62dff 17fce2d 04972db b97d234 e14c5e6 9271228 1589964 abbd3c4 56a0e3a abbd3c4 04972db d34e613 3a40793 d34e613 840866a d34e613 3a40793 9faf7c8 43c57ca 9faf7c8 43c57ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
language:
- en
license: mit
library_name: peft
datasets:
- vicgalle/alpaca-gpt4
pipeline_tag: text-generation
base_model: EleutherAI/gpt-neox-20b
---
# AlpaGo: GPT-NeoX-20B Model Trained with QloRA Technique
AlpaGo is an adapter model trained using the QloRA technique on top of the [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b) model. This repository contains the code and resources for AlpaGo, which can be used for natural language processing tasks. AlpaGo is built on the [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture and developed by Math And AI Institute.
## Features
- AlpaGo adapter model trained with the QloRA technique
- Based on the [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b) model, providing high-quality natural language processing capabilities on Engilish Language
## Evaluation
- Coming soon
## Usage
You can utilize AlpaGo to perform natural language processing tasks. Here's an example of how to use it:
To try via Google Colab Free:
<a href="https://colab.research.google.com/drive/1g0MPDFgOhX4XcY8qi5J7lKfzasOE-uWh?usp=sharing" target="_blank" rel="noreferrer"> <img src="" alt="Colab Demo" width="40" height="40"/> </a>
You can even run it on your own computer if you want.
Warning: You need at least 15 GB VRAM
```python
from peft import PeftModel
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GenerationConfig
model_id = "EleutherAI/gpt-neox-20b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map="auto")
model = PeftModel.from_pretrained(model, "myzens/AlpaGo")
#You can change Here.
PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Write a short story about a lost key that unlocks a mysterious door.
### Response:"""
inputs = tokenizer(PROMPT, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()
generation_config = GenerationConfig(
temperature=0.6,
top_p=0.95,
repetition_penalty=1.15,
)
print("Generating...")
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
for s in generation_output.sequences:
print(tokenizer.decode(s))
```
## Thanks
We would like to thank our teacher Ünver Çiftçi for their support. Thank you to those who wholeheartedly support us on our server.
## Contact
| Name | LinkedIn |
| ------------------ | ------------------------------------------------------- |
| Ünver Çiftçi | [LinkedIn](https://www.linkedin.com/in/unverciftci/) |
| Talha Rüzgar Akkuş | [LinkedIn](https://www.linkedin.com/in/talha-r%C3%BCzgar-akku%C5%9F-1b5457264/) |
| Ethem Yağız Çalık | [LinkedIn](https://www.linkedin.com/in/ethem-ya%C4%9F%C4%B1z-%C3%A7al%C4%B1k-799a73275/) |
| Tarık Kaan Koç | [LinkedIn](https://www.linkedin.com/in/kaankc/) |
| Mehmet Taşan | [LinkedIn](https://www.linkedin.com/in/mehmet-ta%C5%9Fan-msc-bb521126/) |
|