Text Generation
PEFT
English
File size: 8,044 Bytes
06f65a8
4bb4ba2
 
4758624
 
de96751
 
4758624
 
06f65a8
525a0f1
be96997
525a0f1
be96997
525a0f1
 
 
be96997
8b2928c
525a0f1
ef62dff
 
 
17fce2d
04972db
 
 
b97d234
e14c5e6
9271228
1589964
abbd3c4
56a0e3a
abbd3c4
04972db
d34e613
 
3a40793
d34e613
 
 
 
 
 
 
 
840866a
d34e613
3a40793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9faf7c8
43c57ca
9faf7c8
 
 
 
 
 
43c57ca
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
language:
- en
license: mit
library_name: peft
datasets:
- vicgalle/alpaca-gpt4
pipeline_tag: text-generation
base_model: EleutherAI/gpt-neox-20b
---

# AlpaGo: GPT-NeoX-20B Model Trained with QloRA Technique

AlpaGo is an adapter model trained using the QloRA technique on top of the [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b) model. This repository contains the code and resources for AlpaGo, which can be used for natural language processing tasks. AlpaGo is built on the [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture and developed by Math And AI Institute.

## Features

- AlpaGo adapter model trained with the QloRA technique
- Based on the [GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b) model, providing high-quality natural language processing capabilities on Engilish Language

## Evaluation

- Coming soon
  
## Usage

You can utilize AlpaGo to perform natural language processing tasks. Here's an example of how to use it:

To try via Google Colab Free:
<a href="https://colab.research.google.com/drive/1g0MPDFgOhX4XcY8qi5J7lKfzasOE-uWh?usp=sharing" target="_blank" rel="noreferrer"> <img src="" alt="Colab Demo" width="40" height="40"/> </a>

You can even run it on your own computer if you want.

Warning: You need at least 15 GB VRAM
```python
from peft import PeftModel
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, GenerationConfig
model_id = "EleutherAI/gpt-neox-20b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config, device_map="auto")
model = PeftModel.from_pretrained(model, "myzens/AlpaGo")

#You can change Here.
PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
Write a short story about a lost key that unlocks a mysterious door.
### Response:"""

inputs = tokenizer(PROMPT, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()

generation_config = GenerationConfig(
    temperature=0.6,
    top_p=0.95,
    repetition_penalty=1.15,

)

print("Generating...")
generation_output = model.generate(
    input_ids=input_ids,
    generation_config=generation_config,
    return_dict_in_generate=True,
    output_scores=True,
    max_new_tokens=256,
    eos_token_id=tokenizer.eos_token_id,
    pad_token_id=tokenizer.pad_token_id,
)

for s in generation_output.sequences:
    print(tokenizer.decode(s))

```

## Thanks

We would like to thank our teacher Ünver Çiftçi for their support. Thank you to those who wholeheartedly support us on our server.

## Contact

| Name               | LinkedIn                                                |
| ------------------ | ------------------------------------------------------- |
| Ünver Çiftçi       | [LinkedIn](https://www.linkedin.com/in/unverciftci/)     |
| Talha Rüzgar Akkuş | [LinkedIn](https://www.linkedin.com/in/talha-r%C3%BCzgar-akku%C5%9F-1b5457264/) |
| Ethem Yağız Çalık  | [LinkedIn](https://www.linkedin.com/in/ethem-ya%C4%9F%C4%B1z-%C3%A7al%C4%B1k-799a73275/) |
| Tarık Kaan Koç     | [LinkedIn](https://www.linkedin.com/in/kaankc/)          |
| Mehmet Taşan       | [LinkedIn](https://www.linkedin.com/in/mehmet-ta%C5%9Fan-msc-bb521126/) |