Faisal AlKhateeb
commited on
Commit
·
eb4f0e4
1
Parent(s):
19c3116
change mup param names
Browse files- config.json +4 -4
- configuration_btlm.py +14 -14
- modeling_btlm.py +10 -10
config.json
CHANGED
@@ -15,7 +15,7 @@
|
|
15 |
},
|
16 |
"bos_token_id": 50256,
|
17 |
"embd_pdrop": 0.0,
|
18 |
-
"
|
19 |
"eos_token_id": 50256,
|
20 |
"initializer_range": 0.073,
|
21 |
"layer_norm_epsilon": 1e-05,
|
@@ -25,16 +25,16 @@
|
|
25 |
"n_inner": 6826,
|
26 |
"n_layer": 32,
|
27 |
"n_positions": 8192,
|
28 |
-
"
|
29 |
"position_embedding_type": "alibi",
|
30 |
"reorder_and_upcast_attn": false,
|
31 |
"resid_pdrop": 0.0,
|
32 |
"scale_attn_by_inverse_layer_idx": false,
|
33 |
"scale_attn_weights": true,
|
34 |
-
"
|
35 |
"torch_dtype": "bfloat16",
|
36 |
"transformers_version": "4.30.0",
|
37 |
"use_cache": true,
|
38 |
"vocab_size": 50257,
|
39 |
-
"
|
40 |
}
|
|
|
15 |
},
|
16 |
"bos_token_id": 50256,
|
17 |
"embd_pdrop": 0.0,
|
18 |
+
"mup_embeddings_scale": 14.6,
|
19 |
"eos_token_id": 50256,
|
20 |
"initializer_range": 0.073,
|
21 |
"layer_norm_epsilon": 1e-05,
|
|
|
25 |
"n_inner": 6826,
|
26 |
"n_layer": 32,
|
27 |
"n_positions": 8192,
|
28 |
+
"mup_output_alpha": 2.2200000000000003,
|
29 |
"position_embedding_type": "alibi",
|
30 |
"reorder_and_upcast_attn": false,
|
31 |
"resid_pdrop": 0.0,
|
32 |
"scale_attn_by_inverse_layer_idx": false,
|
33 |
"scale_attn_weights": true,
|
34 |
+
"mup_scale_qk_dot_by_d": true,
|
35 |
"torch_dtype": "bfloat16",
|
36 |
"transformers_version": "4.30.0",
|
37 |
"use_cache": true,
|
38 |
"vocab_size": 50257,
|
39 |
+
"mup_width_scale": 0.1
|
40 |
}
|
configuration_btlm.py
CHANGED
@@ -23,7 +23,7 @@ from transformers.utils import logging
|
|
23 |
logger = logging.get_logger(__name__)
|
24 |
|
25 |
BTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
-
"cerebras/
|
27 |
}
|
28 |
|
29 |
|
@@ -74,14 +74,14 @@ class BTLMConfig(PretrainedConfig):
|
|
74 |
dot-product/softmax to float() when training with mixed precision.
|
75 |
position_embedding_type (`str`, *optional*, defaults to `"learned"`):
|
76 |
Positional embedding can be either `"alibi"` or `"learned"`.
|
77 |
-
|
78 |
muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where
|
79 |
`d_model` is the model's width and `d_model,0` is the proxy model's width.
|
80 |
-
|
81 |
muP parameter to scale token and position embeddings.
|
82 |
-
|
83 |
-
muP parameter to scale output logits
|
84 |
-
|
85 |
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
|
86 |
scale_attn_weights to `True` as well.
|
87 |
|
@@ -130,10 +130,10 @@ class BTLMConfig(PretrainedConfig):
|
|
130 |
scale_attn_by_inverse_layer_idx=False,
|
131 |
reorder_and_upcast_attn=False,
|
132 |
position_embedding_type="learned",
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
**kwargs,
|
138 |
):
|
139 |
self.vocab_size = vocab_size
|
@@ -157,9 +157,9 @@ class BTLMConfig(PretrainedConfig):
|
|
157 |
self.eos_token_id = eos_token_id
|
158 |
|
159 |
self.position_embedding_type = position_embedding_type
|
160 |
-
self.
|
161 |
-
self.
|
162 |
-
self.
|
163 |
-
self.
|
164 |
|
165 |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
|
|
23 |
logger = logging.get_logger(__name__)
|
24 |
|
25 |
BTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"cerebras/btlm-3b-8k-base": "https://huggingface.co/cerebras/btlm-3b-8k-base/resolve/main/config.json",
|
27 |
}
|
28 |
|
29 |
|
|
|
74 |
dot-product/softmax to float() when training with mixed precision.
|
75 |
position_embedding_type (`str`, *optional*, defaults to `"learned"`):
|
76 |
Positional embedding can be either `"alibi"` or `"learned"`.
|
77 |
+
mup_width_scale (`float`, *optional*, defaults to 1.0):
|
78 |
muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where
|
79 |
`d_model` is the model's width and `d_model,0` is the proxy model's width.
|
80 |
+
mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
|
81 |
muP parameter to scale token and position embeddings.
|
82 |
+
mup_output_alpha (`float`, *optional*, defaults to 1.0):
|
83 |
+
muP parameter to scale output logits (`output_logits_scale = mup_output_alpha * mup_width_scale`).
|
84 |
+
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
|
85 |
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
|
86 |
scale_attn_weights to `True` as well.
|
87 |
|
|
|
130 |
scale_attn_by_inverse_layer_idx=False,
|
131 |
reorder_and_upcast_attn=False,
|
132 |
position_embedding_type="learned",
|
133 |
+
mup_width_scale=1.0,
|
134 |
+
mup_embeddings_scale=1.0,
|
135 |
+
mup_output_alpha=1.0,
|
136 |
+
mup_scale_qk_dot_by_d=False,
|
137 |
**kwargs,
|
138 |
):
|
139 |
self.vocab_size = vocab_size
|
|
|
157 |
self.eos_token_id = eos_token_id
|
158 |
|
159 |
self.position_embedding_type = position_embedding_type
|
160 |
+
self.mup_width_scale = mup_width_scale
|
161 |
+
self.mup_embeddings_scale = mup_embeddings_scale
|
162 |
+
self.mup_output_alpha = mup_output_alpha
|
163 |
+
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
|
164 |
|
165 |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
modeling_btlm.py
CHANGED
@@ -48,11 +48,11 @@ from .configuration_btlm import BTLMConfig
|
|
48 |
|
49 |
logger = logging.get_logger(__name__)
|
50 |
|
51 |
-
_CHECKPOINT_FOR_DOC = "cerebras/
|
52 |
_CONFIG_FOR_DOC = "BTLMConfig"
|
53 |
|
54 |
BTLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
55 |
-
"cerebras/
|
56 |
# See all BTLM models at https://huggingface.co/models?filter=btlm
|
57 |
]
|
58 |
|
@@ -204,7 +204,7 @@ class BTLMAttention(nn.Module):
|
|
204 |
|
205 |
self.pruned_heads = set()
|
206 |
|
207 |
-
self.attn_scale_power = 1.0 if config.
|
208 |
|
209 |
def prune_heads(self, heads):
|
210 |
if len(heads) == 0:
|
@@ -511,7 +511,7 @@ class BTLMPreTrainedModel(PreTrainedModel):
|
|
511 |
|
512 |
def _init_weights(self, module):
|
513 |
"""Initialize the weights."""
|
514 |
-
mup_init_scale = math.sqrt(self.config.
|
515 |
if isinstance(module, (nn.Linear, Conv1D)):
|
516 |
# Slightly different from the TF version which uses truncated_normal for initialization
|
517 |
# cf https://github.com/pytorch/pytorch/pull/5617
|
@@ -576,7 +576,7 @@ class BTLMPreTrainedModel(PreTrainedModel):
|
|
576 |
return 1
|
577 |
return 0
|
578 |
|
579 |
-
width_scale = self.config.
|
580 |
new_param_groups = []
|
581 |
new_param_groups.append({"params": [], "lr": lr * width_scale, "weight_decay": weight_decay})
|
582 |
if not decoupled_wd:
|
@@ -754,7 +754,7 @@ class BTLMModel(BTLMPreTrainedModel):
|
|
754 |
if config.position_embedding_type != "alibi"
|
755 |
else None
|
756 |
)
|
757 |
-
self.embeddings_scale = config.
|
758 |
|
759 |
self.drop = nn.Dropout(config.embd_pdrop)
|
760 |
self.h = nn.ModuleList([BTLMBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
@@ -1062,7 +1062,7 @@ class BTLMLMHeadModel(BTLMPreTrainedModel):
|
|
1062 |
super().__init__(config)
|
1063 |
self.transformer = BTLMModel(config)
|
1064 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
1065 |
-
self.output_logits_scale = config.
|
1066 |
|
1067 |
# Model parallel
|
1068 |
self.model_parallel = False
|
@@ -1264,7 +1264,7 @@ class BTLMForSequenceClassification(BTLMPreTrainedModel):
|
|
1264 |
self.num_labels = config.num_labels
|
1265 |
self.transformer = BTLMModel(config)
|
1266 |
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1267 |
-
self.output_logits_scale = config.
|
1268 |
|
1269 |
# Model parallel
|
1270 |
self.model_parallel = False
|
@@ -1397,7 +1397,7 @@ class BTLMForTokenClassification(BTLMPreTrainedModel):
|
|
1397 |
classifier_dropout = 0.1
|
1398 |
self.dropout = nn.Dropout(classifier_dropout)
|
1399 |
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1400 |
-
self.output_logits_scale = config.
|
1401 |
|
1402 |
# Model parallel
|
1403 |
self.model_parallel = False
|
@@ -1492,7 +1492,7 @@ class BTLMForQuestionAnswering(BTLMPreTrainedModel):
|
|
1492 |
self.num_labels = config.num_labels
|
1493 |
self.transformer = BTLMModel(config)
|
1494 |
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1495 |
-
self.output_logits_scale = config.
|
1496 |
|
1497 |
# Model parallel
|
1498 |
self.model_parallel = False
|
|
|
48 |
|
49 |
logger = logging.get_logger(__name__)
|
50 |
|
51 |
+
_CHECKPOINT_FOR_DOC = "cerebras/btlm-3b-8k-base"
|
52 |
_CONFIG_FOR_DOC = "BTLMConfig"
|
53 |
|
54 |
BTLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
55 |
+
"cerebras/btlm-3b-8k-base",
|
56 |
# See all BTLM models at https://huggingface.co/models?filter=btlm
|
57 |
]
|
58 |
|
|
|
204 |
|
205 |
self.pruned_heads = set()
|
206 |
|
207 |
+
self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5
|
208 |
|
209 |
def prune_heads(self, heads):
|
210 |
if len(heads) == 0:
|
|
|
511 |
|
512 |
def _init_weights(self, module):
|
513 |
"""Initialize the weights."""
|
514 |
+
mup_init_scale = math.sqrt(self.config.mup_width_scale)
|
515 |
if isinstance(module, (nn.Linear, Conv1D)):
|
516 |
# Slightly different from the TF version which uses truncated_normal for initialization
|
517 |
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
|
576 |
return 1
|
577 |
return 0
|
578 |
|
579 |
+
width_scale = self.config.mup_width_scale
|
580 |
new_param_groups = []
|
581 |
new_param_groups.append({"params": [], "lr": lr * width_scale, "weight_decay": weight_decay})
|
582 |
if not decoupled_wd:
|
|
|
754 |
if config.position_embedding_type != "alibi"
|
755 |
else None
|
756 |
)
|
757 |
+
self.embeddings_scale = config.mup_embeddings_scale
|
758 |
|
759 |
self.drop = nn.Dropout(config.embd_pdrop)
|
760 |
self.h = nn.ModuleList([BTLMBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
|
|
1062 |
super().__init__(config)
|
1063 |
self.transformer = BTLMModel(config)
|
1064 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
1065 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
1066 |
|
1067 |
# Model parallel
|
1068 |
self.model_parallel = False
|
|
|
1264 |
self.num_labels = config.num_labels
|
1265 |
self.transformer = BTLMModel(config)
|
1266 |
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1267 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
1268 |
|
1269 |
# Model parallel
|
1270 |
self.model_parallel = False
|
|
|
1397 |
classifier_dropout = 0.1
|
1398 |
self.dropout = nn.Dropout(classifier_dropout)
|
1399 |
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1400 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
1401 |
|
1402 |
# Model parallel
|
1403 |
self.model_parallel = False
|
|
|
1492 |
self.num_labels = config.num_labels
|
1493 |
self.transformer = BTLMModel(config)
|
1494 |
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1495 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
1496 |
|
1497 |
# Model parallel
|
1498 |
self.model_parallel = False
|