ceyda commited on
Commit
29e8145
·
1 Parent(s): b2d009b

Upload PPO LunarLander-v2 trained agent dark-lightsaber-7

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
PPO-MlpPolicy-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3eaf311a139e9fa4dd1fe9aef38ea4f82120965a3974d72b2662c5ccc6a3ba63
3
+ size 144769
PPO-MlpPolicy-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
PPO-MlpPolicy-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8618addaf0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8618addb80>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8618addc10>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8618addca0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8618addd30>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8618adddc0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8618adde50>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8618addee0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8618addf70>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8618ae0040>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8618ae00d0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8618ad69f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 32,
45
+ "num_timesteps": 2578720,
46
+ "_total_timesteps": 4194304,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651743965.4955933,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": "runs/36lhwemv",
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJong7zDWUW6h8Ului+PuLXbv107uyFAOQAAgD8AAIA/UPWKPs/gRT9b95G8AMLuvv69iT4QZdO9AAAAAAAAAADjtqs+n8tCP/eJGz7QgQ6/nqfOPlxbmTwAAAAAAAAAAGb+ajz22FS8Mhs6u4LVtzzJWba9bjqUPQAAgD8AAIA/AIS/O+m+JbxyWdq9n6O3vdU4nD179pk+AACAPwAAgD+A7Ss96aEtvFjXmLwZ+iI9eReSPcSnAr4AAIA/AACAP004gD3pWFE9hT19vZcwaL7PVE08OsgSPQAAAAAAAAAAZmLbvK7NproNrvoyFIlMMKL3i7ng3o6zAACAPwAAgD+AX8E9dHp4P4qdHD6PCe++sESvPULjgT0AAAAAAAAAAED/P74YqwE/9Q4qPoJe0740U2S9TNxGPQAAAAAAAAAAAMRQPXDCnj6aDry9vWeivvysXbwiDDA9AAAAAAAAAABmi0M+oZXXvHnTnDuKZiW6AIJAvhXn17oAAIA/AACAP81nizzmErY/xa/bPd0ZHL6arRa9UCNmvAAAAAAAAAAAJmKEPQW0xbtq3/G8aW78PMawUL1Wqc89AACAPwAAgD8zZlE9+9GvP6ltGj5nAOi+5GHgPNYskD0AAAAAAAAAAFPRTj46Jbk+icoTvnQXpL6pFXE9gtmKPAAAAAAAAAAADbXOvWrLiz5u6qE+gdmkvgrgfj3tZS28AAAAAAAAAADNtJ+9GbJmPg55Xz4L/pm+KO8FPUbvkD0AAAAAAAAAAM0uwzyuz+y60VcJPBqTjjwU2P87Mhl3vQAAgD8AAIA/c2o5PiCO3T7N+ou+XKCFvmtplzzwAAe+AAAAAAAAAADNlLU9lwmkPnaDcryNypu+Pio6Pb1zjrwAAAAAAAAAAMDlsj00t7o/6HOmPvRkTb7Fjjg9ePZ/PgAAAAAAAAAArSN0vkKw+z6GE2Y+S0LJvkME0r2YCdA9AAAAAAAAAADNnKK6puOmPgsIqj2k9pm+E04HPeoZL70AAAAAAAAAADOElT3+DMo9pkkkvCcbVL4UpbI8lhrPPAAAAAAAAAAAAAAhuTaGMD+KkIQ9ayasvuwcQLq+6co8AAAAAAAAAAAzT8y7qmGvP0MPoL1hRK2+vr+jvMbMtr0AAAAAAAAAAJX3h77/DuU+euJQPofkzr75oZu98J0zPgAAAAAAAAAAZgbIOvaAsz+wc4Q8a7ZxvkGrDL2wTnm9AAAAAAAAAADNnMu8ztOIPglRGj2Nd5K+XoiGvDObST0AAAAAAAAAAHAugD4aLdQ+kcqHvrPCVr7Pk1A8csCrvQAAAAAAAAAApjuAPQ7+tj1a8TW+WVBUvtg0eTwjMxC9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": 0.38671875,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVRRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBd80ffbJckCUhpRSlIwBbJRL9YwBdJRHQK+iuO4G2Th1fZQoaAZoCWgPQwivQPSkTNZwQJSGlFKUaBVL6GgWR0CvotDkELYxdX2UKGgGaAloD0MIMGXggNaOcECUhpRSlGgVS/JoFkdAr6Lk7GNrCXV9lChoBmgJaA9DCLlRZK0hnHJAlIaUUpRoFU0eAWgWR0Cvoxp6IFeOdX2UKGgGaAloD0MIt5kK8Ug6cUCUhpRSlGgVS9poFkdAr6SA7T2FnXV9lChoBmgJaA9DCL/VOnF52nJAlIaUUpRoFUv1aBZHQK+kmLeANG51fZQoaAZoCWgPQwjXFMjsLA5vQJSGlFKUaBVNAQFoFkdAr6UqDujRD3V9lChoBmgJaA9DCCh+jLlrCnFAlIaUUpRoFUvoaBZHQK+lbBu4wyt1fZQoaAZoCWgPQwgzjLtBtA1zQJSGlFKUaBVL92gWR0Cvpd+4b0e2dX2UKGgGaAloD0MIHQJHAs3rcUCUhpRSlGgVTVsCaBZHQK+l9m9xp+N1fZQoaAZoCWgPQwgabOo8KsNxQJSGlFKUaBVL/WgWR0Cvpji7sfJWdX2UKGgGaAloD0MINuZ1xCH5cECUhpRSlGgVS/BoFkdAr6a2h9LHuXV9lChoBmgJaA9DCNTvwtZsCnBAlIaUUpRoFUvxaBZHQK+tzbM5fdB1fZQoaAZoCWgPQwgewCK/fpBwQJSGlFKUaBVL7mgWR0CvrfyBbwBpdX2UKGgGaAloD0MIoG6gwLu/b0CUhpRSlGgVS+doFkdAr64d8uzyBnV9lChoBmgJaA9DCLggW5bvZ3JAlIaUUpRoFU0GAWgWR0CvroxJmNBGdX2UKGgGaAloD0MI1bK1voheckCUhpRSlGgVS+JoFkdAr66XOnl4knV9lChoBmgJaA9DCC8wKxSpXnFAlIaUUpRoFUv7aBZHQK+vA0ygwoN1fZQoaAZoCWgPQwiQh767VeZyQJSGlFKUaBVL42gWR0CvsIPEbYK6dX2UKGgGaAloD0MIaf0tAbjUc0CUhpRSlGgVTQkBaBZHQK+whGlQ/HJ1fZQoaAZoCWgPQwj3BIntbnxvQJSGlFKUaBVL7mgWR0CvsNyjgydndX2UKGgGaAloD0MIDAbX3BEjckCUhpRSlGgVS/hoFkdAr7EZ37k4m3V9lChoBmgJaA9DCM1c4PLYWG9AlIaUUpRoFUv+aBZHQK+xaAmzByl1fZQoaAZoCWgPQwhCXDl7JxtwQJSGlFKUaBVNDQFoFkdAr7HrrRjSX3V9lChoBmgJaA9DCNl78UU7SXNAlIaUUpRoFU0JAWgWR0CvshHIZIhAdX2UKGgGaAloD0MIInL6er4HcUCUhpRSlGgVTRABaBZHQK+yKevIOpd1fZQoaAZoCWgPQwjcKR2sPyNyQJSGlFKUaBVLy2gWR0CvsjXE61b8dX2UKGgGaAloD0MIOZuOAO4AcUCUhpRSlGgVTSkBaBZHQK+ydvUBnzx1fZQoaAZoCWgPQwjGwaVjDvxyQJSGlFKUaBVNCwFoFkdAr7L2s7uDz3V9lChoBmgJaA9DCL0Yyol2jXJAlIaUUpRoFUv/aBZHQK+zTnp0OmR1fZQoaAZoCWgPQwiqKF5lbQdzQJSGlFKUaBVL4mgWR0Cvs0+JHiFTdX2UKGgGaAloD0MIC0J5H8fjb0CUhpRSlGgVTRMBaBZHQK+zW75mAb11fZQoaAZoCWgPQwjPgeUIWXVzQJSGlFKUaBVNAgFoFkdAr7NbjWCmM3V9lChoBmgJaA9DCET5ghaSKHNAlIaUUpRoFUv0aBZHQK+0Y+aBqbl1fZQoaAZoCWgPQwhFZcOaCllyQJSGlFKUaBVNKAFoFkdAr7aGk56t1nV9lChoBmgJaA9DCFLVBFH3I3FAlIaUUpRoFUvwaBZHQK+2zSc9W6t1fZQoaAZoCWgPQwiTNlX3SCVzQJSGlFKUaBVNBwFoFkdAr7e3YjB2wHV9lChoBmgJaA9DCPd0dceiLXJAlIaUUpRoFUv1aBZHQK+4ER6nivR1fZQoaAZoCWgPQwjLZ3keXHtxQJSGlFKUaBVNHwFoFkdAr7g6ySmqHXV9lChoBmgJaA9DCEP+mUE8fHJAlIaUUpRoFU0eAWgWR0CvuEdpyp71dX2UKGgGaAloD0MIpRZKJufhcUCUhpRSlGgVS+NoFkdAr7h5vo/zKHV9lChoBmgJaA9DCAFMGTjgdXBAlIaUUpRoFUvraBZHQK+4rpyIYWN1fZQoaAZoCWgPQwhVL7/TZPpwQJSGlFKUaBVNFAFoFkdAr7kzhxYJV3V9lChoBmgJaA9DCFMDzeecX3NAlIaUUpRoFU0DAWgWR0CvuUteUpuudX2UKGgGaAloD0MIfxZLkTy0ckCUhpRSlGgVTRgBaBZHQK+5edPLxI91fZQoaAZoCWgPQwitMlNav8xxQJSGlFKUaBVL42gWR0CvuZ5owmE5dX2UKGgGaAloD0MIUfnX8opTcECUhpRSlGgVS/FoFkdAr7nBEtuk13V9lChoBmgJaA9DCNgRh2ygg25AlIaUUpRoFU0IAWgWR0CvulcE3bVSdX2UKGgGaAloD0MIUtZvJmbFcECUhpRSlGgVS/JoFkdAr7w68vmHQHV9lChoBmgJaA9DCK5mnfE9bnNAlIaUUpRoFUv1aBZHQK+8qgSOBDp1fZQoaAZoCWgPQwjTTs3lBotNQJSGlFKUaBVLxGgWR0CvvLpFb3XadX2UKGgGaAloD0MI73A7NOwdckCUhpRSlGgVS99oFkdAr7zH1YhdMXV9lChoBmgJaA9DCEDc1atI9HBAlIaUUpRoFU03AWgWR0CvvThakhzOdX2UKGgGaAloD0MIYK5FC5Chc0CUhpRSlGgVTRUBaBZHQK+9ppr1uix1fZQoaAZoCWgPQwh0KENVTLdyQJSGlFKUaBVNFwFoFkdAr73APRRdhXV9lChoBmgJaA9DCJfEWRE1wW5AlIaUUpRoFUvxaBZHQK+98Y/FBIF1fZQoaAZoCWgPQwhYqaCiqlRyQJSGlFKUaBVNCgFoFkdAr76K6xxDLXV9lChoBmgJaA9DCLVRnQ5kjXBAlIaUUpRoFU0IAWgWR0CvvpaQV9F4dX2UKGgGaAloD0MIiV3b2y1QckCUhpRSlGgVTQ0BaBZHQK++6DL8rI51fZQoaAZoCWgPQwiUoL/QYxlzQJSGlFKUaBVNKAFoFkdAr79j94u9OHV9lChoBmgJaA9DCFjIXBlU3nJAlIaUUpRoFUv9aBZHQK+/ZGMn7YV1fZQoaAZoCWgPQwjzWDMySN1wQJSGlFKUaBVNCwFoFkdAr8AIblzU7XV9lChoBmgJaA9DCE2/RLz1P3BAlIaUUpRoFUvzaBZHQK/AH5IpYtB1fZQoaAZoCWgPQwjq501F6iJyQJSGlFKUaBVNHAFoFkdAr8BiqhlDnnV9lChoBmgJaA9DCI3uIHZmnHNAlIaUUpRoFU0oAWgWR0CvwU9q+JxedX2UKGgGaAloD0MIsp5affWebECUhpRSlGgVS/RoFkdAr8I38uSOinV9lChoBmgJaA9DCLPROT9FH3JAlIaUUpRoFUvoaBZHQK/CsIEbHZN1fZQoaAZoCWgPQwiwc9NmnFhvQJSGlFKUaBVL/GgWR0Cvwtf2bobGdX2UKGgGaAloD0MIS1zHuOI+ckCUhpRSlGgVS9xoFkdAr8L8DnvDxnV9lChoBmgJaA9DCHeE04IXxW5AlIaUUpRoFUv4aBZHQK/D6MhHLA51fZQoaAZoCWgPQwhseeV6W6NwQJSGlFKUaBVL8WgWR0CvxIqk/KQrdX2UKGgGaAloD0MI5L1qZcKrbUCUhpRSlGgVTQUBaBZHQK/Ei9XcQAd1fZQoaAZoCWgPQwi0lCwnYRlyQJSGlFKUaBVL9mgWR0CvxOZSWJJodX2UKGgGaAloD0MIpG5nX7m0cUCUhpRSlGgVS/ZoFkdAr8UaLS/j83V9lChoBmgJaA9DCJ9x4UBIKERAlIaUUpRoFUvmaBZHQK/FPpxm03R1fZQoaAZoCWgPQwjLEp1l1lJxQJSGlFKUaBVL92gWR0CvxW0BGQS0dX2UKGgGaAloD0MIIxKFlrXacECUhpRSlGgVTR0BaBZHQK/M/teD3/R1fZQoaAZoCWgPQwhBuW3fI29uQJSGlFKUaBVNBgFoFkdAr80LCxeLN3V9lChoBmgJaA9DCLx2acPhDnBAlIaUUpRoFU03AWgWR0CvzdcHv+fidX2UKGgGaAloD0MIHeT1YJIbcECUhpRSlGgVS+loFkdAr8/M+cH4XXV9lChoBmgJaA9DCGVSQxvAUHJAlIaUUpRoFU0JAWgWR0Cvz+jiwSrYdX2UKGgGaAloD0MIGaw41RqHckCUhpRSlGgVTQABaBZHQK/P6gFHJ911fZQoaAZoCWgPQwiFe2XeKndzQJSGlFKUaBVL8GgWR0Cv0BLTH80ldX2UKGgGaAloD0MIM6MfDaffcUCUhpRSlGgVTQ0BaBZHQK/QiC3gDRt1fZQoaAZoCWgPQwhbfXVVIINxQJSGlFKUaBVL9WgWR0Cv0KJOnEVGdX2UKGgGaAloD0MI+IiYEomLckCUhpRSlGgVTRABaBZHQK/QxiuuA7R1fZQoaAZoCWgPQwg1Jy8yQaJxQJSGlFKUaBVL5WgWR0Cv0N8XvYvndX2UKGgGaAloD0MI66pALYZdckCUhpRSlGgVTREBaBZHQK/RPPt2LYR1fZQoaAZoCWgPQwgLYMrAAbJvQJSGlFKUaBVL+WgWR0Cv0Wv4mCyydX2UKGgGaAloD0MIndhD+1ifcUCUhpRSlGgVS/5oFkdAr9GypPykK3V9lChoBmgJaA9DCK+w4H7AGnFAlIaUUpRoFUvvaBZHQK/R04gA6uJ1fZQoaAZoCWgPQwgSLuQRXDdyQJSGlFKUaBVL9mgWR0Cv0h+5nUUgdX2UKGgGaAloD0MIFJZ4QFkfcUCUhpRSlGgVS+5oFkdAr9LIksz2vnV9lChoBmgJaA9DCBDOp47VUXJAlIaUUpRoFUv2aBZHQK/S3tw71Zl1fZQoaAZoCWgPQwhoQpPEEstyQJSGlFKUaBVL8mgWR0Cv0+aAWi1zdX2UKGgGaAloD0MIn48y4kI7c0CUhpRSlGgVS+VoFkdAr9Snkili0HV9lChoBmgJaA9DCKmfNxWpSm5AlIaUUpRoFUvnaBZHQK/VC4YrJ8x1fZQoaAZoCWgPQwhavcPtEPNwQJSGlFKUaBVL8GgWR0Cv1VWUbDMvdX2UKGgGaAloD0MINpGZCxwLcECUhpRSlGgVTS8BaBZHQK/VcFpPAO91fZQoaAZoCWgPQwi2aWyvBTJxQJSGlFKUaBVL12gWR0Cv1d0qhDgJdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 628,
79
+ "n_steps": 512,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 128,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-MlpPolicy-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd3474991f61382d482b4e76d19c17a73a3726824bc9a11f6ff78247c230be4e
3
+ size 84893
PPO-MlpPolicy-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbe993ba353f8539df8c1ce55f95d207dd851da3d2e4340e410d5a40cd07136c
3
+ size 43201
PPO-MlpPolicy-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-MlpPolicy-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-89-generic-x86_64-with-glibc2.10 #100~18.04.1-Ubuntu SMP Wed Sep 29 10:59:42 UTC 2021
2
+ Python: 3.8.12
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0a0+17540c5
5
+ GPU Enabled: True
6
+ Numpy: 1.22.2
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 271.05 +/- 22.76
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8618addaf0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8618addb80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8618addc10>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8618addca0>", "_build": "<function ActorCriticPolicy._build at 0x7f8618addd30>", "forward": "<function ActorCriticPolicy.forward at 0x7f8618adddc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8618adde50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8618addee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8618addf70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8618ae0040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8618ae00d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8618ad69f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2578720, "_total_timesteps": 4194304, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651743965.4955933, "learning_rate": 0.0003, "tensorboard_log": "runs/36lhwemv", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJong7zDWUW6h8Ului+PuLXbv107uyFAOQAAgD8AAIA/UPWKPs/gRT9b95G8AMLuvv69iT4QZdO9AAAAAAAAAADjtqs+n8tCP/eJGz7QgQ6/nqfOPlxbmTwAAAAAAAAAAGb+ajz22FS8Mhs6u4LVtzzJWba9bjqUPQAAgD8AAIA/AIS/O+m+JbxyWdq9n6O3vdU4nD179pk+AACAPwAAgD+A7Ss96aEtvFjXmLwZ+iI9eReSPcSnAr4AAIA/AACAP004gD3pWFE9hT19vZcwaL7PVE08OsgSPQAAAAAAAAAAZmLbvK7NproNrvoyFIlMMKL3i7ng3o6zAACAPwAAgD+AX8E9dHp4P4qdHD6PCe++sESvPULjgT0AAAAAAAAAAED/P74YqwE/9Q4qPoJe0740U2S9TNxGPQAAAAAAAAAAAMRQPXDCnj6aDry9vWeivvysXbwiDDA9AAAAAAAAAABmi0M+oZXXvHnTnDuKZiW6AIJAvhXn17oAAIA/AACAP81nizzmErY/xa/bPd0ZHL6arRa9UCNmvAAAAAAAAAAAJmKEPQW0xbtq3/G8aW78PMawUL1Wqc89AACAPwAAgD8zZlE9+9GvP6ltGj5nAOi+5GHgPNYskD0AAAAAAAAAAFPRTj46Jbk+icoTvnQXpL6pFXE9gtmKPAAAAAAAAAAADbXOvWrLiz5u6qE+gdmkvgrgfj3tZS28AAAAAAAAAADNtJ+9GbJmPg55Xz4L/pm+KO8FPUbvkD0AAAAAAAAAAM0uwzyuz+y60VcJPBqTjjwU2P87Mhl3vQAAgD8AAIA/c2o5PiCO3T7N+ou+XKCFvmtplzzwAAe+AAAAAAAAAADNlLU9lwmkPnaDcryNypu+Pio6Pb1zjrwAAAAAAAAAAMDlsj00t7o/6HOmPvRkTb7Fjjg9ePZ/PgAAAAAAAAAArSN0vkKw+z6GE2Y+S0LJvkME0r2YCdA9AAAAAAAAAADNnKK6puOmPgsIqj2k9pm+E04HPeoZL70AAAAAAAAAADOElT3+DMo9pkkkvCcbVL4UpbI8lhrPPAAAAAAAAAAAAAAhuTaGMD+KkIQ9ayasvuwcQLq+6co8AAAAAAAAAAAzT8y7qmGvP0MPoL1hRK2+vr+jvMbMtr0AAAAAAAAAAJX3h77/DuU+euJQPofkzr75oZu98J0zPgAAAAAAAAAAZgbIOvaAsz+wc4Q8a7ZxvkGrDL2wTnm9AAAAAAAAAADNnMu8ztOIPglRGj2Nd5K+XoiGvDObST0AAAAAAAAAAHAugD4aLdQ+kcqHvrPCVr7Pk1A8csCrvQAAAAAAAAAApjuAPQ7+tj1a8TW+WVBUvtg0eTwjMxC9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.38671875, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBd80ffbJckCUhpRSlIwBbJRL9YwBdJRHQK+iuO4G2Th1fZQoaAZoCWgPQwivQPSkTNZwQJSGlFKUaBVL6GgWR0CvotDkELYxdX2UKGgGaAloD0MIMGXggNaOcECUhpRSlGgVS/JoFkdAr6Lk7GNrCXV9lChoBmgJaA9DCLlRZK0hnHJAlIaUUpRoFU0eAWgWR0Cvoxp6IFeOdX2UKGgGaAloD0MIt5kK8Ug6cUCUhpRSlGgVS9poFkdAr6SA7T2FnXV9lChoBmgJaA9DCL/VOnF52nJAlIaUUpRoFUv1aBZHQK+kmLeANG51fZQoaAZoCWgPQwjXFMjsLA5vQJSGlFKUaBVNAQFoFkdAr6UqDujRD3V9lChoBmgJaA9DCCh+jLlrCnFAlIaUUpRoFUvoaBZHQK+lbBu4wyt1fZQoaAZoCWgPQwgzjLtBtA1zQJSGlFKUaBVL92gWR0Cvpd+4b0e2dX2UKGgGaAloD0MIHQJHAs3rcUCUhpRSlGgVTVsCaBZHQK+l9m9xp+N1fZQoaAZoCWgPQwgabOo8KsNxQJSGlFKUaBVL/WgWR0Cvpji7sfJWdX2UKGgGaAloD0MINuZ1xCH5cECUhpRSlGgVS/BoFkdAr6a2h9LHuXV9lChoBmgJaA9DCNTvwtZsCnBAlIaUUpRoFUvxaBZHQK+tzbM5fdB1fZQoaAZoCWgPQwgewCK/fpBwQJSGlFKUaBVL7mgWR0CvrfyBbwBpdX2UKGgGaAloD0MIoG6gwLu/b0CUhpRSlGgVS+doFkdAr64d8uzyBnV9lChoBmgJaA9DCLggW5bvZ3JAlIaUUpRoFU0GAWgWR0CvroxJmNBGdX2UKGgGaAloD0MI1bK1voheckCUhpRSlGgVS+JoFkdAr66XOnl4knV9lChoBmgJaA9DCC8wKxSpXnFAlIaUUpRoFUv7aBZHQK+vA0ygwoN1fZQoaAZoCWgPQwiQh767VeZyQJSGlFKUaBVL42gWR0CvsIPEbYK6dX2UKGgGaAloD0MIaf0tAbjUc0CUhpRSlGgVTQkBaBZHQK+whGlQ/HJ1fZQoaAZoCWgPQwj3BIntbnxvQJSGlFKUaBVL7mgWR0CvsNyjgydndX2UKGgGaAloD0MIDAbX3BEjckCUhpRSlGgVS/hoFkdAr7EZ37k4m3V9lChoBmgJaA9DCM1c4PLYWG9AlIaUUpRoFUv+aBZHQK+xaAmzByl1fZQoaAZoCWgPQwhCXDl7JxtwQJSGlFKUaBVNDQFoFkdAr7HrrRjSX3V9lChoBmgJaA9DCNl78UU7SXNAlIaUUpRoFU0JAWgWR0CvshHIZIhAdX2UKGgGaAloD0MIInL6er4HcUCUhpRSlGgVTRABaBZHQK+yKevIOpd1fZQoaAZoCWgPQwjcKR2sPyNyQJSGlFKUaBVLy2gWR0CvsjXE61b8dX2UKGgGaAloD0MIOZuOAO4AcUCUhpRSlGgVTSkBaBZHQK+ydvUBnzx1fZQoaAZoCWgPQwjGwaVjDvxyQJSGlFKUaBVNCwFoFkdAr7L2s7uDz3V9lChoBmgJaA9DCL0Yyol2jXJAlIaUUpRoFUv/aBZHQK+zTnp0OmR1fZQoaAZoCWgPQwiqKF5lbQdzQJSGlFKUaBVL4mgWR0Cvs0+JHiFTdX2UKGgGaAloD0MIC0J5H8fjb0CUhpRSlGgVTRMBaBZHQK+zW75mAb11fZQoaAZoCWgPQwjPgeUIWXVzQJSGlFKUaBVNAgFoFkdAr7NbjWCmM3V9lChoBmgJaA9DCET5ghaSKHNAlIaUUpRoFUv0aBZHQK+0Y+aBqbl1fZQoaAZoCWgPQwhFZcOaCllyQJSGlFKUaBVNKAFoFkdAr7aGk56t1nV9lChoBmgJaA9DCFLVBFH3I3FAlIaUUpRoFUvwaBZHQK+2zSc9W6t1fZQoaAZoCWgPQwiTNlX3SCVzQJSGlFKUaBVNBwFoFkdAr7e3YjB2wHV9lChoBmgJaA9DCPd0dceiLXJAlIaUUpRoFUv1aBZHQK+4ER6nivR1fZQoaAZoCWgPQwjLZ3keXHtxQJSGlFKUaBVNHwFoFkdAr7g6ySmqHXV9lChoBmgJaA9DCEP+mUE8fHJAlIaUUpRoFU0eAWgWR0CvuEdpyp71dX2UKGgGaAloD0MIpRZKJufhcUCUhpRSlGgVS+NoFkdAr7h5vo/zKHV9lChoBmgJaA9DCAFMGTjgdXBAlIaUUpRoFUvraBZHQK+4rpyIYWN1fZQoaAZoCWgPQwhVL7/TZPpwQJSGlFKUaBVNFAFoFkdAr7kzhxYJV3V9lChoBmgJaA9DCFMDzeecX3NAlIaUUpRoFU0DAWgWR0CvuUteUpuudX2UKGgGaAloD0MIfxZLkTy0ckCUhpRSlGgVTRgBaBZHQK+5edPLxI91fZQoaAZoCWgPQwitMlNav8xxQJSGlFKUaBVL42gWR0CvuZ5owmE5dX2UKGgGaAloD0MIUfnX8opTcECUhpRSlGgVS/FoFkdAr7nBEtuk13V9lChoBmgJaA9DCNgRh2ygg25AlIaUUpRoFU0IAWgWR0CvulcE3bVSdX2UKGgGaAloD0MIUtZvJmbFcECUhpRSlGgVS/JoFkdAr7w68vmHQHV9lChoBmgJaA9DCK5mnfE9bnNAlIaUUpRoFUv1aBZHQK+8qgSOBDp1fZQoaAZoCWgPQwjTTs3lBotNQJSGlFKUaBVLxGgWR0CvvLpFb3XadX2UKGgGaAloD0MI73A7NOwdckCUhpRSlGgVS99oFkdAr7zH1YhdMXV9lChoBmgJaA9DCEDc1atI9HBAlIaUUpRoFU03AWgWR0CvvThakhzOdX2UKGgGaAloD0MIYK5FC5Chc0CUhpRSlGgVTRUBaBZHQK+9ppr1uix1fZQoaAZoCWgPQwh0KENVTLdyQJSGlFKUaBVNFwFoFkdAr73APRRdhXV9lChoBmgJaA9DCJfEWRE1wW5AlIaUUpRoFUvxaBZHQK+98Y/FBIF1fZQoaAZoCWgPQwhYqaCiqlRyQJSGlFKUaBVNCgFoFkdAr76K6xxDLXV9lChoBmgJaA9DCLVRnQ5kjXBAlIaUUpRoFU0IAWgWR0CvvpaQV9F4dX2UKGgGaAloD0MIiV3b2y1QckCUhpRSlGgVTQ0BaBZHQK++6DL8rI51fZQoaAZoCWgPQwiUoL/QYxlzQJSGlFKUaBVNKAFoFkdAr79j94u9OHV9lChoBmgJaA9DCFjIXBlU3nJAlIaUUpRoFUv9aBZHQK+/ZGMn7YV1fZQoaAZoCWgPQwjzWDMySN1wQJSGlFKUaBVNCwFoFkdAr8AIblzU7XV9lChoBmgJaA9DCE2/RLz1P3BAlIaUUpRoFUvzaBZHQK/AH5IpYtB1fZQoaAZoCWgPQwjq501F6iJyQJSGlFKUaBVNHAFoFkdAr8BiqhlDnnV9lChoBmgJaA9DCI3uIHZmnHNAlIaUUpRoFU0oAWgWR0CvwU9q+JxedX2UKGgGaAloD0MIsp5affWebECUhpRSlGgVS/RoFkdAr8I38uSOinV9lChoBmgJaA9DCLPROT9FH3JAlIaUUpRoFUvoaBZHQK/CsIEbHZN1fZQoaAZoCWgPQwiwc9NmnFhvQJSGlFKUaBVL/GgWR0Cvwtf2bobGdX2UKGgGaAloD0MIS1zHuOI+ckCUhpRSlGgVS9xoFkdAr8L8DnvDxnV9lChoBmgJaA9DCHeE04IXxW5AlIaUUpRoFUv4aBZHQK/D6MhHLA51fZQoaAZoCWgPQwhseeV6W6NwQJSGlFKUaBVL8WgWR0CvxIqk/KQrdX2UKGgGaAloD0MI5L1qZcKrbUCUhpRSlGgVTQUBaBZHQK/Ei9XcQAd1fZQoaAZoCWgPQwi0lCwnYRlyQJSGlFKUaBVL9mgWR0CvxOZSWJJodX2UKGgGaAloD0MIpG5nX7m0cUCUhpRSlGgVS/ZoFkdAr8UaLS/j83V9lChoBmgJaA9DCJ9x4UBIKERAlIaUUpRoFUvmaBZHQK/FPpxm03R1fZQoaAZoCWgPQwjLEp1l1lJxQJSGlFKUaBVL92gWR0CvxW0BGQS0dX2UKGgGaAloD0MIIxKFlrXacECUhpRSlGgVTR0BaBZHQK/M/teD3/R1fZQoaAZoCWgPQwhBuW3fI29uQJSGlFKUaBVNBgFoFkdAr80LCxeLN3V9lChoBmgJaA9DCLx2acPhDnBAlIaUUpRoFU03AWgWR0CvzdcHv+fidX2UKGgGaAloD0MIHeT1YJIbcECUhpRSlGgVS+loFkdAr8/M+cH4XXV9lChoBmgJaA9DCGVSQxvAUHJAlIaUUpRoFU0JAWgWR0Cvz+jiwSrYdX2UKGgGaAloD0MIGaw41RqHckCUhpRSlGgVTQABaBZHQK/P6gFHJ911fZQoaAZoCWgPQwiFe2XeKndzQJSGlFKUaBVL8GgWR0Cv0BLTH80ldX2UKGgGaAloD0MIM6MfDaffcUCUhpRSlGgVTQ0BaBZHQK/QiC3gDRt1fZQoaAZoCWgPQwhbfXVVIINxQJSGlFKUaBVL9WgWR0Cv0KJOnEVGdX2UKGgGaAloD0MI+IiYEomLckCUhpRSlGgVTRABaBZHQK/QxiuuA7R1fZQoaAZoCWgPQwg1Jy8yQaJxQJSGlFKUaBVL5WgWR0Cv0N8XvYvndX2UKGgGaAloD0MI66pALYZdckCUhpRSlGgVTREBaBZHQK/RPPt2LYR1fZQoaAZoCWgPQwgLYMrAAbJvQJSGlFKUaBVL+WgWR0Cv0Wv4mCyydX2UKGgGaAloD0MIndhD+1ifcUCUhpRSlGgVS/5oFkdAr9GypPykK3V9lChoBmgJaA9DCK+w4H7AGnFAlIaUUpRoFUvvaBZHQK/R04gA6uJ1fZQoaAZoCWgPQwgSLuQRXDdyQJSGlFKUaBVL9mgWR0Cv0h+5nUUgdX2UKGgGaAloD0MIFJZ4QFkfcUCUhpRSlGgVS+5oFkdAr9LIksz2vnV9lChoBmgJaA9DCBDOp47VUXJAlIaUUpRoFUv2aBZHQK/S3tw71Zl1fZQoaAZoCWgPQwhoQpPEEstyQJSGlFKUaBVL8mgWR0Cv0+aAWi1zdX2UKGgGaAloD0MIn48y4kI7c0CUhpRSlGgVS+VoFkdAr9Snkili0HV9lChoBmgJaA9DCKmfNxWpSm5AlIaUUpRoFUvnaBZHQK/VC4YrJ8x1fZQoaAZoCWgPQwhavcPtEPNwQJSGlFKUaBVL8GgWR0Cv1VWUbDMvdX2UKGgGaAloD0MINpGZCxwLcECUhpRSlGgVTS8BaBZHQK/VcFpPAO91fZQoaAZoCWgPQwi2aWyvBTJxQJSGlFKUaBVL12gWR0Cv1d0qhDgJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 628, "n_steps": 512, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-89-generic-x86_64-with-glibc2.10 #100~18.04.1-Ubuntu SMP Wed Sep 29 10:59:42 UTC 2021", "Python": "3.8.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0a0+17540c5", "GPU Enabled": "True", "Numpy": "1.22.2", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74524f44295c63c400debf57b8a8e64bb58e4b5fbc8353b66ff746523d29c15b
3
+ size 192977
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 271.05250600722945, "std_reward": 22.760914292716404, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T20:30:42.218504"}