Update README.md
Browse files
README.md
CHANGED
@@ -17,16 +17,51 @@ datasets:
|
|
17 |
|
18 |
# **NaturalQuery-6.7B-v0.1**
|
19 |
|
|
|
|
|
20 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/hafdsfrFCqrVbATIzV_EN.png" width="600">
|
21 |
|
22 |
**NaturalQuery** is a LLM that can translate natural language queries to SQL based on your schema. It is finetuned on 8k text to PostgreSQL Natural Language <> SQL pairs.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
**Future Improvements**:
|
25 |
|
26 |
- Much larger training set
|
27 |
- More complex schemas, questions, and queries
|
|
|
28 |
- Reward modeling via DPO
|
29 |
-
- Benchmarking
|
30 |
|
31 |
# **Usage**
|
32 |
|
|
|
17 |
|
18 |
# **NaturalQuery-6.7B-v0.1**
|
19 |
|
20 |
+
### NaturalQuery is a series of models with state-of-the-art performance on Text to SQL instructions.
|
21 |
+
|
22 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/hafdsfrFCqrVbATIzV_EN.png" width="600">
|
23 |
|
24 |
**NaturalQuery** is a LLM that can translate natural language queries to SQL based on your schema. It is finetuned on 8k text to PostgreSQL Natural Language <> SQL pairs.
|
25 |
+
NaturalQuery matches the state of the art models in text to sql for it's size and produces the best in the field for complex questions.
|
26 |
+
|
27 |
+
Here is a write up, small test done [here](https://chatdb.ai/post/naturalsql-vs-sqlcoder-for-text-to-sql).
|
28 |
+
|
29 |
+
# Table of Contents
|
30 |
+
1. [Benchmarks](#Benchmarks)
|
31 |
+
- [SQL-Eval on Novel Datasets](#SQL-Eval-on-Novel-Datasets)
|
32 |
+
- [SQL-Eval by Category](#SQL-Eval-by-Category)
|
33 |
+
2. [Future Improvements](#Future-Improvements)
|
34 |
+
3. [Usage](#Usage)
|
35 |
+
- [Installation](#Installation)
|
36 |
+
- [Loading the Model](#Loading-the-Model)
|
37 |
+
- [Generating Text](#Generating-Text)
|
38 |
+
4. [SQL Generation Template](#SQL-Generation-Template)
|
39 |
+
5. [Example SQL Output](#Example-SQL-Output)
|
40 |
+
- [Example Schemas](#Example-Schemas)
|
41 |
+
- [Example Queries](#Example-Queries)
|
42 |
+
|
43 |
+
## **Benchmarks**
|
44 |
+
|
45 |
+
## SQL-Eval on novel datasets not seen in training
|
46 |
+
|
47 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/omYzbu9ZO8hx7cnUtOZKg.png" width="600">
|
48 |
+
|
49 |
+
<em>Big thanks to the [defog](https://huggingface.co/defog) team for open sourcing [sql-eval](https://github.com/defog-ai/sql-eval)</em>👏
|
50 |
+
|
51 |
+
## **SQL-Eval by SQL Category**
|
52 |
+
|
53 |
+
**NaturalQuery-6.7B-v0 matches or outperforms other industry leading models in multiple categories!**
|
54 |
+
|
55 |
+
<img src="https://cdn-uploads.huggingface.co/production/uploads/648a374f00f7a3374ee64b99/G6lGyTbBUmEkKdmJ9r4jp.png" width="600">
|
56 |
+
|
57 |
+
_The **date** category will be a strong focus in the next iteration of `v1`._
|
58 |
|
59 |
+
**Future Improvements in the next iteration**:
|
60 |
|
61 |
- Much larger training set
|
62 |
- More complex schemas, questions, and queries
|
63 |
+
- Strong focus on Date Queries
|
64 |
- Reward modeling via DPO
|
|
|
65 |
|
66 |
# **Usage**
|
67 |
|