cfli commited on
Commit
a451b62
·
verified ·
1 Parent(s): 90ed540

Upload 3 files

Browse files
Files changed (2) hide show
  1. config.json +2 -2
  2. modeling_minicpm_reranker.py +1494 -0
config.json CHANGED
@@ -7,8 +7,8 @@
7
  "attention_dropout": 0.0,
8
  "auto_map": {
9
  "AutoConfig": "cfli/MiniCPM-2B-reranker--configuration_minicpm_reranker.LayerWiseMiniCPMConfig",
10
- "LayerWiseMiniCPMModel": "cfli/MiniCPM-2B-reranker--modeling_minicpm.LayerWiseMiniCPMModel",
11
- "LayerWiseMiniCPMForCausalLM": "cfli/MiniCPM-2B-reranker--modeling_minicpm.LayerWiseMiniCPMForCausalLM"
12
  },
13
  "bos_token_id": 1,
14
  "dim_model_base": 256,
 
7
  "attention_dropout": 0.0,
8
  "auto_map": {
9
  "AutoConfig": "cfli/MiniCPM-2B-reranker--configuration_minicpm_reranker.LayerWiseMiniCPMConfig",
10
+ "AutoModel": "cfli/MiniCPM-2B-reranker--modeling_minicpm_reranker.LayerWiseMiniCPMModel",
11
+ "AutoModelForCausalLM": "cfli/MiniCPM-2B-reranker--modeling_minicpm_reranker.LayerWiseMiniCPMForCausalLM"
12
  },
13
  "bos_token_id": 1,
14
  "dim_model_base": 256,
modeling_minicpm_reranker.py ADDED
@@ -0,0 +1,1494 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch MiniCPM model."""
21
+ import sys
22
+
23
+ import math
24
+ import warnings
25
+ from typing import List, Optional, Tuple, Union, Dict
26
+
27
+ import torch
28
+ import torch.nn.functional as F
29
+ import torch.utils.checkpoint
30
+ from torch import nn
31
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
32
+
33
+ from transformers.activations import ACT2FN
34
+ from transformers.cache_utils import Cache, DynamicCache
35
+ from transformers.modeling_attn_mask_utils import (
36
+ AttentionMaskConverter,
37
+ _prepare_4d_attention_mask,
38
+ _prepare_4d_causal_attention_mask,
39
+ _prepare_4d_causal_attention_mask_for_sdpa,
40
+ )
41
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \
42
+ SequenceClassifierOutputWithPast
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
45
+ from transformers.utils import (
46
+ add_start_docstrings,
47
+ add_start_docstrings_to_model_forward,
48
+ is_flash_attn_2_available,
49
+ is_flash_attn_greater_or_equal_2_10,
50
+ logging,
51
+ replace_return_docstrings,
52
+ )
53
+ from transformers.utils.import_utils import is_torch_fx_available
54
+ from configuration_minicpm_reranker import MiniCPMConfig
55
+ import re
56
+
57
+ try:
58
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
59
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
60
+ except:
61
+ pass
62
+
63
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
64
+ # It means that the function will not be traced through and simply appear as a node in the graph.
65
+ if is_torch_fx_available():
66
+ if not is_torch_greater_or_equal_than_1_13:
67
+ import torch.fx
68
+
69
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
70
+
71
+ logger = logging.get_logger(__name__)
72
+
73
+ _CONFIG_FOR_DOC = "MiniCPMConfig"
74
+
75
+
76
+ def _get_unpad_data(attention_mask):
77
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
78
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
79
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
80
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
81
+ return (
82
+ indices,
83
+ cu_seqlens,
84
+ max_seqlen_in_batch,
85
+ )
86
+
87
+
88
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
89
+ warnings.warn(
90
+ "Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
91
+ )
92
+ return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
93
+
94
+
95
+ def _make_causal_mask(
96
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
97
+ ):
98
+ warnings.warn(
99
+ "Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask"
100
+ )
101
+ return AttentionMaskConverter._make_causal_mask(
102
+ input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
103
+ )
104
+
105
+
106
+ # @torch.jit.script # type: ignore
107
+ def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
108
+ old_dtype = hidden.dtype
109
+ variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
110
+ hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype)
111
+ return hidden * weight
112
+
113
+
114
+ class MiniCPMRMSNorm(nn.Module):
115
+ def __init__(self, hidden_size, eps=1e-6):
116
+ """
117
+ MiniCPMRMSNorm is equivalent to T5LayerNorm
118
+ """
119
+ super().__init__()
120
+ self.weight = nn.Parameter(torch.ones(hidden_size))
121
+ self.variance_epsilon = eps
122
+
123
+ def forward(self, hidden_states):
124
+ return rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
125
+
126
+
127
+ ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm)
128
+
129
+
130
+ class MiniCPMRotaryEmbedding(nn.Module):
131
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
132
+ super().__init__()
133
+
134
+ self.dim = dim
135
+ self.max_position_embeddings = max_position_embeddings
136
+ self.base = base
137
+ inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
138
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
139
+
140
+ # Build here to make `torch.jit.trace` work.
141
+ self._set_cos_sin_cache(
142
+ # seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
143
+ seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
144
+ )
145
+
146
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
147
+ self.max_seq_len_cached = seq_len
148
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
149
+ freqs = torch.outer(t, self.inv_freq)
150
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
151
+ emb = torch.cat((freqs, freqs), dim=-1)
152
+
153
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
154
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
155
+
156
+ def forward(self, x, seq_len=None):
157
+ # x: [bs, num_attention_heads, seq_len, head_size]
158
+ if seq_len > self.max_seq_len_cached:
159
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
160
+
161
+ return (
162
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
163
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
164
+ )
165
+
166
+
167
+ class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
168
+ """MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
169
+
170
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
171
+ self.scaling_factor = scaling_factor
172
+ super().__init__(dim, max_position_embeddings, base, device)
173
+
174
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
175
+ self.max_seq_len_cached = seq_len
176
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
177
+ t = t / self.scaling_factor
178
+
179
+ freqs = torch.outer(t, self.inv_freq)
180
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
181
+ emb = torch.cat((freqs, freqs), dim=-1)
182
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
183
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
184
+
185
+
186
+ class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
187
+ """MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
188
+
189
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
190
+ self.scaling_factor = scaling_factor
191
+ super().__init__(dim, max_position_embeddings, base, device)
192
+
193
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
194
+ self.max_seq_len_cached = seq_len
195
+
196
+ if seq_len > self.max_position_embeddings:
197
+ base = self.base * (
198
+ (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
199
+ ) ** (self.dim / (self.dim - 2))
200
+ inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
201
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
202
+
203
+ t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
204
+
205
+ freqs = torch.outer(t, self.inv_freq)
206
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
207
+ emb = torch.cat((freqs, freqs), dim=-1)
208
+
209
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
210
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
211
+
212
+
213
+ def rotate_half(x):
214
+ """Rotates half the hidden dims of the input."""
215
+ x1 = x[..., : x.shape[-1] // 2]
216
+ x2 = x[..., x.shape[-1] // 2:]
217
+ return torch.cat((-x2, x1), dim=-1)
218
+
219
+
220
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
221
+ """Applies Rotary Position Embedding to the query and key tensors.
222
+
223
+ Args:
224
+ q (`torch.Tensor`): The query tensor.
225
+ k (`torch.Tensor`): The key tensor.
226
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
227
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
228
+ position_ids (`torch.Tensor`):
229
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
230
+ used to pass offsetted position ids when working with a KV-cache.
231
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
232
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
233
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
234
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
235
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
236
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
237
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
238
+ Returns:
239
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
240
+ """
241
+ # cos = cos[position_ids].unsqueeze(unsqueeze_dim)
242
+ # sin = sin[position_ids].unsqueeze(unsqueeze_dim)
243
+ # q_embed = (q * cos) + (rotate_half(q) * sin)
244
+ # k_embed = (k * cos) + (rotate_half(k) * sin)
245
+ orig_dtype = k.dtype
246
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
247
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
248
+ q_fp32 = q.to(dtype=torch.float32, device=q.device)
249
+ k_fp32 = k.to(dtype=torch.float32, device=k.device)
250
+ q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin)
251
+ k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin)
252
+ return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype)
253
+
254
+
255
+ class MiniCPMMLP(nn.Module):
256
+ def __init__(self, config):
257
+ super().__init__()
258
+ self.config = config
259
+ self.hidden_size = config.hidden_size
260
+ self.intermediate_size = config.intermediate_size
261
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
262
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
263
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
264
+ self.act_fn = ACT2FN[config.hidden_act]
265
+
266
+ def forward(self, x):
267
+ if self.config.pretraining_tp > 1:
268
+ slice = self.intermediate_size // self.config.pretraining_tp
269
+ gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
270
+ up_proj_slices = self.up_proj.weight.split(slice, dim=0)
271
+ down_proj_slices = self.down_proj.weight.split(slice, dim=1)
272
+
273
+ gate_proj = torch.cat(
274
+ [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
275
+ )
276
+ up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
277
+
278
+ intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
279
+ down_proj = [
280
+ F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
281
+ ]
282
+ down_proj = sum(down_proj)
283
+ else:
284
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
285
+
286
+ return down_proj
287
+
288
+
289
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
290
+ """
291
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
292
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
293
+ """
294
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
295
+ if n_rep == 1:
296
+ return hidden_states
297
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
298
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
299
+
300
+
301
+ class MiniCPMAttention(nn.Module):
302
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
303
+
304
+ def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None):
305
+ super().__init__()
306
+ self.config = config
307
+ self.layer_idx = layer_idx
308
+ if layer_idx is None:
309
+ logger.warning_once(
310
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
311
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
312
+ "when creating this class."
313
+ )
314
+
315
+ self.attention_dropout = config.attention_dropout
316
+ self.hidden_size = config.hidden_size
317
+ self.num_heads = config.num_attention_heads
318
+ self.head_dim = self.hidden_size // self.num_heads
319
+ self.num_key_value_heads = config.num_key_value_heads
320
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
321
+ self.max_position_embeddings = config.max_position_embeddings
322
+ self.rope_theta = config.rope_theta
323
+ self.is_causal = True
324
+
325
+ if (self.head_dim * self.num_heads) != self.hidden_size:
326
+ raise ValueError(
327
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
328
+ f" and `num_heads`: {self.num_heads})."
329
+ )
330
+
331
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
332
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
333
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
334
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
335
+ self._init_rope()
336
+
337
+ def _init_rope(self):
338
+ if self.config.rope_scaling is None:
339
+ self.rotary_emb = MiniCPMRotaryEmbedding(
340
+ self.head_dim,
341
+ max_position_embeddings=self.max_position_embeddings,
342
+ base=self.rope_theta,
343
+ )
344
+ else:
345
+ scaling_type = self.config.rope_scaling["type"]
346
+ scaling_factor = self.config.rope_scaling["factor"]
347
+ if scaling_type == "linear":
348
+ self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding(
349
+ self.head_dim,
350
+ max_position_embeddings=self.max_position_embeddings,
351
+ scaling_factor=scaling_factor,
352
+ base=self.rope_theta,
353
+ )
354
+ elif scaling_type == "dynamic":
355
+ self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding(
356
+ self.head_dim,
357
+ max_position_embeddings=self.max_position_embeddings,
358
+ scaling_factor=scaling_factor,
359
+ base=self.rope_theta,
360
+ )
361
+ else:
362
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
363
+
364
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
365
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
366
+
367
+ def forward(
368
+ self,
369
+ hidden_states: torch.Tensor,
370
+ attention_mask: Optional[torch.Tensor] = None,
371
+ position_ids: Optional[torch.LongTensor] = None,
372
+ past_key_value: Optional[Cache] = None,
373
+ output_attentions: bool = False,
374
+ use_cache: bool = False,
375
+ **kwargs,
376
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
377
+ if "padding_mask" in kwargs:
378
+ warnings.warn(
379
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
380
+ )
381
+
382
+ bsz, q_len, _ = hidden_states.size()
383
+
384
+ if self.config.pretraining_tp > 1:
385
+ key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
386
+ query_slices = self.q_proj.weight.split(
387
+ (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
388
+ )
389
+ key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
390
+ value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
391
+
392
+ query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
393
+ query_states = torch.cat(query_states, dim=-1)
394
+
395
+ key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
396
+ key_states = torch.cat(key_states, dim=-1)
397
+
398
+ value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
399
+ value_states = torch.cat(value_states, dim=-1)
400
+
401
+ else:
402
+ query_states = self.q_proj(hidden_states)
403
+ key_states = self.k_proj(hidden_states)
404
+ value_states = self.v_proj(hidden_states)
405
+
406
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
407
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
408
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
409
+
410
+ kv_seq_len = key_states.shape[-2]
411
+ if past_key_value is not None:
412
+ if self.layer_idx is None:
413
+ raise ValueError(
414
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
415
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
416
+ "with a layer index."
417
+ )
418
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
419
+ cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
420
+
421
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
422
+
423
+ if past_key_value is not None:
424
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
425
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
426
+
427
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
428
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
429
+
430
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
431
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
432
+ raise ValueError(
433
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
434
+ f" {attn_weights.size()}"
435
+ )
436
+
437
+ if attention_mask is not None:
438
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
439
+ raise ValueError(
440
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
441
+ )
442
+ attn_weights = attn_weights + attention_mask
443
+
444
+ # upcast attention to fp32
445
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
446
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
447
+ attn_output = torch.matmul(attn_weights, value_states)
448
+
449
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
450
+ raise ValueError(
451
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
452
+ f" {attn_output.size()}"
453
+ )
454
+
455
+ attn_output = attn_output.transpose(1, 2).contiguous()
456
+
457
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
458
+
459
+ if self.config.pretraining_tp > 1:
460
+ attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
461
+ o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
462
+ attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
463
+ else:
464
+ attn_output = self.o_proj(attn_output)
465
+
466
+ if not output_attentions:
467
+ attn_weights = None
468
+
469
+ return attn_output, attn_weights, past_key_value
470
+
471
+
472
+ class MiniCPMFlashAttention2(MiniCPMAttention):
473
+ """
474
+ MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays
475
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
476
+ flash attention and deal with padding tokens in case the input contains any of them.
477
+ """
478
+
479
+ def __init__(self, *args, **kwargs):
480
+ super().__init__(*args, **kwargs)
481
+
482
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
483
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
484
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
485
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
486
+
487
+ def forward(
488
+ self,
489
+ hidden_states: torch.Tensor,
490
+ attention_mask: Optional[torch.LongTensor] = None,
491
+ position_ids: Optional[torch.LongTensor] = None,
492
+ past_key_value: Optional[Cache] = None,
493
+ output_attentions: bool = False,
494
+ use_cache: bool = False,
495
+ **kwargs,
496
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
497
+ # MiniCPMFlashAttention2 attention does not support output_attentions
498
+ if "padding_mask" in kwargs:
499
+ warnings.warn(
500
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
501
+ )
502
+
503
+ # overwrite attention_mask with padding_mask
504
+ attention_mask = kwargs.pop("padding_mask")
505
+
506
+ output_attentions = False
507
+
508
+ bsz, q_len, _ = hidden_states.size()
509
+
510
+ query_states = self.q_proj(hidden_states)
511
+ key_states = self.k_proj(hidden_states)
512
+ value_states = self.v_proj(hidden_states)
513
+
514
+ # Flash attention requires the input to have the shape
515
+ # batch_size x seq_length x head_dim x hidden_dim
516
+ # therefore we just need to keep the original shape
517
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
518
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
519
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
520
+
521
+ kv_seq_len = key_states.shape[-2]
522
+ if past_key_value is not None:
523
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
524
+ cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
525
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
526
+
527
+ if past_key_value is not None:
528
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
529
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
530
+
531
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
532
+ # to be able to avoid many of these transpose/reshape/view.
533
+ query_states = query_states.transpose(1, 2)
534
+ key_states = key_states.transpose(1, 2)
535
+ value_states = value_states.transpose(1, 2)
536
+
537
+ dropout_rate = self.attention_dropout if self.training else 0.0
538
+
539
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
540
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
541
+ # cast them back in the correct dtype just to be sure everything works as expected.
542
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
543
+ # in fp32. (MiniCPMRMSNorm handles it correctly)
544
+
545
+ input_dtype = query_states.dtype
546
+ if input_dtype == torch.float32:
547
+ # Handle the case where the model is quantized
548
+ if hasattr(self.config, "_pre_quantization_dtype"):
549
+ target_dtype = self.config._pre_quantization_dtype
550
+ else:
551
+ target_dtype = self.q_proj.weight.dtype
552
+
553
+ logger.warning_once(
554
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
555
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
556
+ f" {target_dtype}."
557
+ )
558
+
559
+ query_states = query_states.to(target_dtype)
560
+ key_states = key_states.to(target_dtype)
561
+ value_states = value_states.to(target_dtype)
562
+
563
+ attn_output = self._flash_attention_forward(
564
+ query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
565
+ )
566
+
567
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
568
+ attn_output = self.o_proj(attn_output)
569
+
570
+ if not output_attentions:
571
+ attn_weights = None
572
+
573
+ return attn_output, attn_weights, past_key_value
574
+
575
+ def _flash_attention_forward(
576
+ self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
577
+ ):
578
+ """
579
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
580
+ first unpad the input, then computes the attention scores and pad the final attention scores.
581
+
582
+ Args:
583
+ query_states (`torch.Tensor`):
584
+ Input query states to be passed to Flash Attention API
585
+ key_states (`torch.Tensor`):
586
+ Input key states to be passed to Flash Attention API
587
+ value_states (`torch.Tensor`):
588
+ Input value states to be passed to Flash Attention API
589
+ attention_mask (`torch.Tensor`):
590
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
591
+ position of padding tokens and 1 for the position of non-padding tokens.
592
+ dropout (`int`, *optional*):
593
+ Attention dropout
594
+ softmax_scale (`float`, *optional*):
595
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
596
+ """
597
+ if not self._flash_attn_uses_top_left_mask:
598
+ causal = self.is_causal
599
+ else:
600
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
601
+ causal = self.is_causal and query_length != 1
602
+ # Contains at least one padding token in the sequence
603
+ if attention_mask is not None:
604
+ batch_size = query_states.shape[0]
605
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
606
+ query_states, key_states, value_states, attention_mask, query_length
607
+ )
608
+
609
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
610
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
611
+ attn_output_unpad = flash_attn_varlen_func(
612
+ query_states,
613
+ key_states,
614
+ value_states,
615
+ cu_seqlens_q=cu_seqlens_q,
616
+ cu_seqlens_k=cu_seqlens_k,
617
+ max_seqlen_q=max_seqlen_in_batch_q,
618
+ max_seqlen_k=max_seqlen_in_batch_k,
619
+ dropout_p=dropout,
620
+ softmax_scale=softmax_scale,
621
+ causal=causal,
622
+ )
623
+
624
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
625
+ else:
626
+ attn_output = flash_attn_func(
627
+ query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
628
+ )
629
+
630
+ return attn_output
631
+
632
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
633
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
634
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
635
+
636
+ key_layer = index_first_axis(
637
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
638
+ )
639
+ value_layer = index_first_axis(
640
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
641
+ )
642
+ if query_length == kv_seq_len:
643
+ query_layer = index_first_axis(
644
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
645
+ )
646
+ cu_seqlens_q = cu_seqlens_k
647
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
648
+ indices_q = indices_k
649
+ elif query_length == 1:
650
+ max_seqlen_in_batch_q = 1
651
+ cu_seqlens_q = torch.arange(
652
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
653
+ ) # There is a memcpy here, that is very bad.
654
+ indices_q = cu_seqlens_q[:-1]
655
+ query_layer = query_layer.squeeze(1)
656
+ else:
657
+ # The -q_len: slice assumes left padding.
658
+ attention_mask = attention_mask[:, -query_length:]
659
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
660
+
661
+ return (
662
+ query_layer,
663
+ key_layer,
664
+ value_layer,
665
+ indices_q,
666
+ (cu_seqlens_q, cu_seqlens_k),
667
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
668
+ )
669
+
670
+
671
+ class MiniCPMSdpaAttention(MiniCPMAttention):
672
+ """
673
+ MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
674
+ `MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
675
+ SDPA API.
676
+ """
677
+
678
+ # Adapted from MiniCPMAttention.forward
679
+ def forward(
680
+ self,
681
+ hidden_states: torch.Tensor,
682
+ attention_mask: Optional[torch.Tensor] = None,
683
+ position_ids: Optional[torch.LongTensor] = None,
684
+ past_key_value: Optional[Cache] = None,
685
+ output_attentions: bool = False,
686
+ use_cache: bool = False,
687
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
688
+ if output_attentions:
689
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
690
+ logger.warning_once(
691
+ "MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
692
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
693
+ )
694
+ return super().forward(
695
+ hidden_states=hidden_states,
696
+ attention_mask=attention_mask,
697
+ position_ids=position_ids,
698
+ past_key_value=past_key_value,
699
+ output_attentions=output_attentions,
700
+ use_cache=use_cache,
701
+ )
702
+
703
+ bsz, q_len, _ = hidden_states.size()
704
+
705
+ query_states = self.q_proj(hidden_states)
706
+ key_states = self.k_proj(hidden_states)
707
+ value_states = self.v_proj(hidden_states)
708
+
709
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
710
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
711
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
712
+
713
+ kv_seq_len = key_states.shape[-2]
714
+ if past_key_value is not None:
715
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
716
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
717
+
718
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
719
+
720
+ if past_key_value is not None:
721
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
722
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
723
+
724
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
725
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
726
+
727
+ if attention_mask is not None:
728
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
729
+ raise ValueError(
730
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
731
+ )
732
+
733
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
734
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
735
+ if query_states.device.type == "cuda" and attention_mask is not None:
736
+ query_states = query_states.contiguous()
737
+ key_states = key_states.contiguous()
738
+ value_states = value_states.contiguous()
739
+
740
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
741
+ query_states,
742
+ key_states,
743
+ value_states,
744
+ attn_mask=attention_mask,
745
+ dropout_p=self.attention_dropout if self.training else 0.0,
746
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
747
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
748
+ )
749
+
750
+ attn_output = attn_output.transpose(1, 2).contiguous()
751
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
752
+
753
+ attn_output = self.o_proj(attn_output)
754
+
755
+ return attn_output, None, past_key_value
756
+
757
+
758
+ MINICPM_ATTENTION_CLASSES = {
759
+ "eager": MiniCPMAttention,
760
+ "flash_attention_2": MiniCPMFlashAttention2,
761
+ "sdpa": MiniCPMSdpaAttention,
762
+ }
763
+
764
+
765
+ class MiniCPMDecoderLayer(nn.Module):
766
+ def __init__(self, config: MiniCPMConfig, layer_idx: int):
767
+ super().__init__()
768
+ self.hidden_size = config.hidden_size
769
+ self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
770
+
771
+ self.mlp = MiniCPMMLP(config)
772
+ self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
773
+ self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
774
+
775
+ self.scale_depth = config.scale_depth
776
+ self.num_hidden_layers = config.num_hidden_layers
777
+
778
+ def forward(
779
+ self,
780
+ hidden_states: torch.Tensor,
781
+ attention_mask: Optional[torch.Tensor] = None,
782
+ position_ids: Optional[torch.LongTensor] = None,
783
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
784
+ output_attentions: Optional[bool] = False,
785
+ use_cache: Optional[bool] = False,
786
+ **kwargs,
787
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
788
+ """
789
+ Args:
790
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
791
+ attention_mask (`torch.FloatTensor`, *optional*):
792
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
793
+ query_sequence_length, key_sequence_length)` if default attention is used.
794
+ output_attentions (`bool`, *optional*):
795
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
796
+ returned tensors for more detail.
797
+ use_cache (`bool`, *optional*):
798
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
799
+ (see `past_key_values`).
800
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
801
+ """
802
+ if "padding_mask" in kwargs:
803
+ warnings.warn(
804
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
805
+ )
806
+
807
+ residual = hidden_states
808
+ hidden_states = self.input_layernorm(hidden_states)
809
+ # Self Attention
810
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
811
+ hidden_states=hidden_states,
812
+ attention_mask=attention_mask,
813
+ position_ids=position_ids,
814
+ past_key_value=past_key_value,
815
+ output_attentions=output_attentions,
816
+ use_cache=use_cache,
817
+ **kwargs,
818
+ )
819
+
820
+ hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
821
+
822
+ # Fully Connected
823
+ residual = hidden_states
824
+ hidden_states = self.post_attention_layernorm(hidden_states)
825
+
826
+ hidden_states = self.mlp(hidden_states)
827
+ hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
828
+
829
+ outputs = (hidden_states,)
830
+
831
+ if output_attentions:
832
+ outputs += (self_attn_weights,)
833
+
834
+ if use_cache:
835
+ outputs += (present_key_value,)
836
+
837
+ return outputs
838
+
839
+
840
+ MINICPM_START_DOCSTRING = r"""
841
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
842
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
843
+ etc.)
844
+
845
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
846
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
847
+ and behavior.
848
+
849
+ Parameters:
850
+ config ([`MiniCPMConfig`]):
851
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
852
+ load the weights associated with the model, only the configuration. Check out the
853
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
854
+ """
855
+
856
+
857
+ @add_start_docstrings(
858
+ "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
859
+ MINICPM_START_DOCSTRING,
860
+ )
861
+ class MiniCPMPreTrainedModel(PreTrainedModel):
862
+ config_class = MiniCPMConfig
863
+ base_model_prefix = "model"
864
+ supports_gradient_checkpointing = True
865
+ _no_split_modules = ["MiniCPMDecoderLayer"]
866
+ _skip_keys_device_placement = "past_key_values"
867
+ _supports_flash_attn_2 = True
868
+ _supports_sdpa = True
869
+ _supports_cache_class = True
870
+
871
+ def _init_weights(self, module):
872
+ std = self.config.initializer_range
873
+ if isinstance(module, nn.Linear):
874
+ module.weight.data.normal_(mean=0.0, std=std)
875
+ if module.bias is not None:
876
+ module.bias.data.zero_()
877
+ elif isinstance(module, nn.Embedding):
878
+ module.weight.data.normal_(mean=0.0, std=std)
879
+ if module.padding_idx is not None:
880
+ module.weight.data[module.padding_idx].zero_()
881
+
882
+
883
+ MINICPM_INPUTS_DOCSTRING = r"""
884
+ Args:
885
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
886
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
887
+ it.
888
+
889
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
890
+ [`PreTrainedTokenizer.__call__`] for details.
891
+
892
+ [What are input IDs?](../glossary#input-ids)
893
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
894
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
895
+
896
+ - 1 for tokens that are **not masked**,
897
+ - 0 for tokens that are **masked**.
898
+
899
+ [What are attention masks?](../glossary#attention-mask)
900
+
901
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
902
+ [`PreTrainedTokenizer.__call__`] for details.
903
+
904
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
905
+ `past_key_values`).
906
+
907
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
908
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
909
+ information on the default strategy.
910
+
911
+ - 1 indicates the head is **not masked**,
912
+ - 0 indicates the head is **masked**.
913
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
914
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
915
+ config.n_positions - 1]`.
916
+
917
+ [What are position IDs?](../glossary#position-ids)
918
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
919
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
920
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
921
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
922
+
923
+ Two formats are allowed:
924
+ - a [`~cache_utils.Cache`] instance;
925
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
926
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
927
+ cache format.
928
+
929
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
930
+ legacy cache format will be returned.
931
+
932
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
933
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
934
+ of shape `(batch_size, sequence_length)`.
935
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
936
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
937
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
938
+ model's internal embedding lookup matrix.
939
+ use_cache (`bool`, *optional*):
940
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
941
+ `past_key_values`).
942
+ output_attentions (`bool`, *optional*):
943
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
944
+ tensors for more detail.
945
+ output_hidden_states (`bool`, *optional*):
946
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
947
+ more detail.
948
+ return_dict (`bool`, *optional*):
949
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
950
+ """
951
+
952
+
953
+ @add_start_docstrings(
954
+ "The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
955
+ MINICPM_START_DOCSTRING,
956
+ )
957
+ class LayerWiseMiniCPMModel(MiniCPMPreTrainedModel):
958
+ """
959
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
960
+
961
+ Args:
962
+ config: MiniCPMConfig
963
+ """
964
+
965
+ def __init__(self, config: MiniCPMConfig):
966
+ super().__init__(config)
967
+ self.padding_idx = config.pad_token_id
968
+ self.vocab_size = config.vocab_size
969
+
970
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
971
+ self.layers = nn.ModuleList(
972
+ [MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
973
+ )
974
+ self._use_sdpa = config._attn_implementation == "sdpa"
975
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
976
+
977
+ self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
978
+
979
+ self.gradient_checkpointing = False
980
+ # Initialize weights and apply final processing
981
+ self.post_init()
982
+
983
+ def get_input_embeddings(self):
984
+ return self.embed_tokens
985
+
986
+ def set_input_embeddings(self, value):
987
+ self.embed_tokens = value
988
+
989
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
990
+ def forward(
991
+ self,
992
+ input_ids: torch.LongTensor = None,
993
+ attention_mask: Optional[torch.Tensor] = None,
994
+ position_ids: Optional[torch.LongTensor] = None,
995
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
996
+ inputs_embeds: Optional[torch.FloatTensor] = None,
997
+ use_cache: Optional[bool] = None,
998
+ output_attentions: Optional[bool] = None,
999
+ output_hidden_states: Optional[bool] = None,
1000
+ return_dict: Optional[bool] = None,
1001
+ cutoff_layers: Optional[Union[int, List]] = None,
1002
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1003
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1004
+ output_hidden_states = (
1005
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1006
+ )
1007
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1008
+
1009
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1010
+
1011
+ # retrieve input_ids and inputs_embeds
1012
+ if input_ids is not None and inputs_embeds is not None:
1013
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1014
+ elif input_ids is not None:
1015
+ batch_size, seq_length = input_ids.shape[:2]
1016
+ elif inputs_embeds is not None:
1017
+ batch_size, seq_length = inputs_embeds.shape[:2]
1018
+ else:
1019
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1020
+
1021
+ if self.gradient_checkpointing and self.training:
1022
+ if use_cache:
1023
+ logger.warning_once(
1024
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1025
+ )
1026
+ use_cache = False
1027
+
1028
+ past_key_values_length = 0
1029
+ if use_cache:
1030
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1031
+ if use_legacy_cache:
1032
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1033
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1034
+
1035
+ if position_ids is None:
1036
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1037
+ position_ids = torch.arange(
1038
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1039
+ )
1040
+ position_ids = position_ids.unsqueeze(0)
1041
+
1042
+ if inputs_embeds is None:
1043
+ inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
1044
+
1045
+ if self._use_flash_attention_2:
1046
+ # 2d mask is passed through the layers
1047
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1048
+ elif self._use_sdpa and not output_attentions:
1049
+ # output_attentions=True can not be supported when using SDPA, and we fall back on
1050
+ # the manual implementation that requires a 4D causal mask in all cases.
1051
+ attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1052
+ attention_mask,
1053
+ (batch_size, seq_length),
1054
+ inputs_embeds,
1055
+ past_key_values_length,
1056
+ )
1057
+ else:
1058
+ # 4d mask is passed through the layers
1059
+ attention_mask = _prepare_4d_causal_attention_mask(
1060
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
1061
+ )
1062
+
1063
+ # embed positions
1064
+ hidden_states = inputs_embeds
1065
+
1066
+ # decoder layers
1067
+ all_hidden_states = () if output_hidden_states else None
1068
+ all_self_attns = () if output_attentions else None
1069
+ next_decoder_cache = None
1070
+
1071
+ if cutoff_layers is None:
1072
+ max_layer = self.config.num_hidden_layers
1073
+ cutoff_layers = [max_layer]
1074
+ if isinstance(cutoff_layers, int):
1075
+ max_layer = cutoff_layers
1076
+ cutoff_layers = [cutoff_layers]
1077
+ else:
1078
+ max_layer = max(cutoff_layers)
1079
+
1080
+ for idx, decoder_layer in enumerate(self.layers):
1081
+ if idx in cutoff_layers and output_hidden_states:
1082
+ all_hidden_states += (self.norm(hidden_states),)
1083
+
1084
+ if idx == max_layer:
1085
+ break
1086
+
1087
+ if self.gradient_checkpointing and self.training:
1088
+ layer_outputs = self._gradient_checkpointing_func(
1089
+ decoder_layer.__call__,
1090
+ hidden_states,
1091
+ attention_mask,
1092
+ position_ids,
1093
+ past_key_values,
1094
+ output_attentions,
1095
+ use_cache,
1096
+ )
1097
+ else:
1098
+ layer_outputs = decoder_layer(
1099
+ hidden_states,
1100
+ attention_mask=attention_mask,
1101
+ position_ids=position_ids,
1102
+ past_key_value=past_key_values,
1103
+ output_attentions=output_attentions,
1104
+ use_cache=use_cache,
1105
+ )
1106
+
1107
+ hidden_states = layer_outputs[0]
1108
+
1109
+ if use_cache:
1110
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1111
+
1112
+ if output_attentions:
1113
+ all_self_attns += (layer_outputs[1],)
1114
+
1115
+ hidden_states = self.norm(hidden_states)
1116
+
1117
+ # add hidden states from the last decoder layer
1118
+ if output_hidden_states and self.config.num_hidden_layers == max_layer:
1119
+ all_hidden_states += (hidden_states,)
1120
+
1121
+ next_cache = None
1122
+ if use_cache:
1123
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1124
+ if not return_dict:
1125
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1126
+ return BaseModelOutputWithPast(
1127
+ last_hidden_state=hidden_states,
1128
+ past_key_values=next_cache,
1129
+ hidden_states=all_hidden_states,
1130
+ attentions=all_self_attns,
1131
+ )
1132
+
1133
+
1134
+ class LayerWiseHead(nn.Module):
1135
+ """Head for sentence-level classification tasks."""
1136
+
1137
+ def __init__(self, input_size, output_size):
1138
+ super().__init__()
1139
+ self.linear_head = nn.Linear(input_size, output_size, bias=False)
1140
+
1141
+ def forward(self, **kwargs):
1142
+ return self.linear_head(**kwargs)
1143
+
1144
+ class LayerWiseMiniCPMForCausalLM(MiniCPMPreTrainedModel):
1145
+ _tied_weights_keys = ["lm_head.weight"]
1146
+
1147
+ def __init__(self, config):
1148
+ super().__init__(config)
1149
+ self.model = LayerWiseMiniCPMModel(config)
1150
+ self.vocab_size = config.vocab_size
1151
+
1152
+ if self.config.head_type == 'raw':
1153
+ if not self.config.head_multi:
1154
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1155
+ else:
1156
+ self.lm_head = nn.ModuleList([nn.Linear(
1157
+ config.hidden_size, config.vocab_size, bias=False) for _ in range(
1158
+ self.config.start_layer,
1159
+ self.model.config.num_hidden_layers + 1)])
1160
+ elif self.config.head_type == 'complex':
1161
+ if not self.config.head_multi:
1162
+ # self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1163
+ self.lm_head = LayerWiseHead(config.hidden_size, config.vocab_size)
1164
+ else:
1165
+ # self.lm_head = nn.ModuleList([nn.Linear(
1166
+ # config.hidden_size, config.vocab_size, bias=False) for _ in range(
1167
+ # self.config.start_layer,
1168
+ # self.model.config.num_hidden_layers + 1)])
1169
+ self.lm_head = nn.ModuleList([LayerWiseHead(
1170
+ config.hidden_size, config.vocab_size) for _ in range(
1171
+ self.config.start_layer,
1172
+ self.model.config.num_hidden_layers + 1)])
1173
+ else:
1174
+ if not self.config.head_multi:
1175
+ # self.lm_head = nn.Linear(config.hidden_size, 1, bias=False)
1176
+ self.lm_head = LayerWiseHead(config.hidden_size, 1)
1177
+ else:
1178
+ # self.lm_head = nn.ModuleList([nn.Linear(
1179
+ # config.hidden_size, 1, bias=False) for _ in range(
1180
+ # self.config.start_layer,
1181
+ # self.model.config.num_hidden_layers + 1)])
1182
+ self.lm_head = nn.ModuleList([LayerWiseHead(
1183
+ config.hidden_size, 1) for _ in range(
1184
+ self.config.start_layer,
1185
+ self.model.config.num_hidden_layers + 1)])
1186
+
1187
+ # Initialize weights and apply final processing
1188
+ self.post_init()
1189
+
1190
+ def get_input_embeddings(self):
1191
+ return self.model.embed_tokens
1192
+
1193
+ def set_input_embeddings(self, value):
1194
+ self.model.embed_tokens = value
1195
+
1196
+ def get_output_embeddings(self):
1197
+ return self.lm_head
1198
+
1199
+ def set_output_embeddings(self, new_embeddings):
1200
+ self.lm_head = new_embeddings
1201
+
1202
+ def set_decoder(self, decoder):
1203
+ self.model = decoder
1204
+
1205
+ def get_decoder(self):
1206
+ return self.model
1207
+
1208
+ @add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
1209
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1210
+ def forward(
1211
+ self,
1212
+ input_ids: torch.LongTensor = None,
1213
+ attention_mask: Optional[torch.Tensor] = None,
1214
+ position_ids: Optional[torch.LongTensor] = None,
1215
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1216
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1217
+ labels: Optional[torch.LongTensor] = None,
1218
+ use_cache: Optional[bool] = None,
1219
+ output_attentions: Optional[bool] = None,
1220
+ output_hidden_states: Optional[bool] = None,
1221
+ return_dict: Optional[bool] = None,
1222
+ cutoff_layers: Optional[Union[int, List]] = None,
1223
+ only_for_one_logit: Optional[int] = None
1224
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1225
+ r"""
1226
+ Args:
1227
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1228
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1229
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1230
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1231
+
1232
+ Returns:
1233
+
1234
+ Example:
1235
+
1236
+ ```python
1237
+ >>> from transformers import AutoTokenizer, MiniCPMForCausalLM
1238
+
1239
+ >>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1240
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1241
+
1242
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1243
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1244
+
1245
+ >>> # Generate
1246
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1247
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1248
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1249
+ ```"""
1250
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1251
+ output_hidden_states = (
1252
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1253
+ )
1254
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1255
+
1256
+ if cutoff_layers is None:
1257
+ cutoff_layers = [self.config.num_hidden_layers]
1258
+ elif isinstance(cutoff_layers, int):
1259
+ cutoff_layers = [cutoff_layers]
1260
+
1261
+ remove_layers = [i for i in cutoff_layers if self.config.start_layer > i or i > self.config.num_hidden_layers]
1262
+ if len(remove_layers) > 0:
1263
+ logger.warning_once(
1264
+ f"layers {remove_layers} is incompatible with the setting. They will be removed..."
1265
+ )
1266
+
1267
+ cutoff_layers = [i for i in cutoff_layers if i not in remove_layers]
1268
+
1269
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1270
+ outputs = self.model(
1271
+ input_ids=input_ids,
1272
+ attention_mask=attention_mask,
1273
+ position_ids=position_ids,
1274
+ past_key_values=past_key_values,
1275
+ inputs_embeds=inputs_embeds,
1276
+ use_cache=use_cache,
1277
+ output_attentions=output_attentions,
1278
+ output_hidden_states=True,
1279
+ return_dict=return_dict,
1280
+ cutoff_layers=cutoff_layers
1281
+ )
1282
+
1283
+ hidden_states = outputs[0]
1284
+
1285
+ all_logits = ()
1286
+ if only_for_one_logit is None and (self.config.head_type == 'complex' or self.config.head_type == 'raw'):
1287
+ if self.config.head_type == 'raw':
1288
+ for i in range(len(outputs.hidden_states)):
1289
+ if self.config.head_multi == False:
1290
+ if self.config.pretraining_tp > 1:
1291
+ lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1292
+ logits = [F.linear(outputs.hidden_states[i], lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1293
+ logits = torch.cat(logits, dim=-1)
1294
+ else:
1295
+ logits = self.lm_head(outputs.hidden_states[i] / (self.config.hidden_size / self.config.dim_model_base))
1296
+ else:
1297
+ if self.config.pretraining_tp > 1:
1298
+ lm_head_slices = self.lm_head[cutoff_layers[i] - self.config.start_layer].weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1299
+ logits = [F.linear(outputs.hidden_states[i], lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1300
+ logits = torch.cat(logits, dim=-1)
1301
+ else:
1302
+ logits = self.lm_head[cutoff_layers[i] - self.config.start_layer](outputs.hidden_states[i] / (self.config.hidden_size / self.config.dim_model_base))
1303
+ logits = logits.float()
1304
+ logits = logits.reshape(input_ids.shape[0], -1)
1305
+ all_logits = all_logits + (logits, )
1306
+ else:
1307
+ for i in range(len(outputs.hidden_states)):
1308
+ if self.config.head_multi == False:
1309
+ if self.config.pretraining_tp > 1:
1310
+ lm_head_slices = self.lm_head.linear_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1311
+ logits = [F.linear(outputs.hidden_states[i], lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1312
+ logits = torch.cat(logits, dim=-1)
1313
+ else:
1314
+ logits = self.lm_head.linear_head(outputs.hidden_states[i] / (self.config.hidden_size / self.config.dim_model_base))
1315
+ else:
1316
+ if self.config.pretraining_tp > 1:
1317
+ lm_head_slices = self.lm_head[cutoff_layers[i] - self.config.start_layer].linear_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
1318
+ logits = [F.linear(outputs.hidden_states[i], lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
1319
+ logits = torch.cat(logits, dim=-1)
1320
+ else:
1321
+ logits = self.lm_head[cutoff_layers[i] - self.config.start_layer].linear_head(outputs.hidden_states[i] / (self.config.hidden_size / self.config.dim_model_base))
1322
+ logits = logits.float()
1323
+ logits = logits.reshape(input_ids.shape[0], -1)
1324
+ all_logits = all_logits + (logits, )
1325
+ else:
1326
+ if self.config.head_type == 'raw':
1327
+ if only_for_one_logit is None:
1328
+ raise ValueError("Cannot handle `only_for_one_logit` is None if the head type is complex.")
1329
+
1330
+ if self.config.head_multi == False:
1331
+ lm_head_slices = self.lm_head.weight.split(1, dim=0)
1332
+ for i in range(len(outputs.hidden_states)):
1333
+ logits = F.linear(outputs.hidden_states[i], lm_head_slices[only_for_one_logit])
1334
+ logits = logits.float()
1335
+ logits = logits.reshape(input_ids.shape[0], -1)
1336
+ all_logits = all_logits + (logits,)
1337
+ else:
1338
+ for i in range(len(outputs.hidden_states)):
1339
+ lm_head_slices = self.lm_head[cutoff_layers[i] - self.config.start_layer].weight.split(1, dim=0)
1340
+ logits = F.linear(outputs.hidden_states[i], lm_head_slices[only_for_one_logit])
1341
+ logits = logits.float()
1342
+ logits = logits.reshape(input_ids.shape[0], -1)
1343
+ all_logits = all_logits + (logits, )
1344
+ elif self.config.head_type == 'complex':
1345
+ if only_for_one_logit is None:
1346
+ raise ValueError("Cannot handle `only_for_one_logit` is None if the head type is complex.")
1347
+
1348
+ if self.config.head_multi == False:
1349
+ lm_head_slices = self.lm_head.linear_head.weight.split(1, dim=0)
1350
+ for i in range(len(outputs.hidden_states)):
1351
+ logits = F.linear(outputs.hidden_states[i], lm_head_slices[only_for_one_logit])
1352
+ logits = logits.float()
1353
+ logits = logits.reshape(input_ids.shape[0], -1)
1354
+ all_logits = all_logits + (logits,)
1355
+ else:
1356
+ for i in range(len(outputs.hidden_states)):
1357
+ lm_head_slices = self.lm_head[cutoff_layers[i] - self.config.start_layer].linear_head.weight.split(1, dim=0)
1358
+ logits = F.linear(outputs.hidden_states[i], lm_head_slices[only_for_one_logit])
1359
+ logits = logits.float()
1360
+ logits = logits.reshape(input_ids.shape[0], -1)
1361
+ all_logits = all_logits + (logits, )
1362
+ else:
1363
+ if self.config.head_multi == False:
1364
+ for i in range(len(outputs.hidden_states)):
1365
+ logits = self.lm_head.linear_head(outputs.hidden_states[i])
1366
+ logits = logits.float()
1367
+ logits = logits.reshape(input_ids.shape[0], -1)
1368
+ all_logits = all_logits + (logits,)
1369
+ else:
1370
+ for i in range(len(outputs.hidden_states)):
1371
+ logits = self.lm_head[cutoff_layers[i] - self.config.start_layer].linear_head(outputs.hidden_states[i])
1372
+ logits = logits.float()
1373
+ logits = logits.reshape(input_ids.shape[0], -1)
1374
+ all_logits = all_logits + (logits,)
1375
+
1376
+ loss = None
1377
+ if labels is not None and not only_for_one_logit and self.config.head_type == 'complex':
1378
+ # Shift so that tokens < n predict n
1379
+ loss = 0
1380
+ for logits in all_logits:
1381
+ shift_logits = logits[..., :-1, :].contiguous()
1382
+ shift_labels = labels[..., 1:].contiguous()
1383
+ # Flatten the tokens
1384
+ loss_fct = CrossEntropyLoss()
1385
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1386
+ shift_labels = shift_labels.view(-1)
1387
+ # Enable model parallelism
1388
+ shift_labels = shift_labels.to(shift_logits.device)
1389
+ loss += loss_fct(shift_logits, shift_labels)
1390
+
1391
+ outputs.hidden_states = None if not output_hidden_states else outputs.hidden_states
1392
+
1393
+ if not return_dict:
1394
+ output = (all_logits,) + outputs[1:]
1395
+ return (loss,) + output if loss is not None else output
1396
+
1397
+ return CausalLMOutputWithPast(
1398
+ loss=loss,
1399
+ logits=all_logits,
1400
+ past_key_values=outputs.past_key_values,
1401
+ hidden_states=outputs.hidden_states,
1402
+ attentions=outputs.attentions,
1403
+ )
1404
+
1405
+ def prepare_inputs_for_generation(
1406
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
1407
+ ):
1408
+ if past_key_values is not None:
1409
+ if isinstance(past_key_values, Cache):
1410
+ cache_length = past_key_values.get_seq_length()
1411
+ past_length = past_key_values.seen_tokens
1412
+ max_cache_length = past_key_values.get_max_length()
1413
+ else:
1414
+ cache_length = past_length = past_key_values[0][0].shape[2]
1415
+ max_cache_length = None
1416
+
1417
+ # Keep only the unprocessed tokens:
1418
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1419
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1420
+ # input)
1421
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1422
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length):]
1423
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1424
+ # input_ids based on the past_length.
1425
+ elif past_length < input_ids.shape[1]:
1426
+ input_ids = input_ids[:, past_length:]
1427
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1428
+
1429
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1430
+ if (
1431
+ max_cache_length is not None
1432
+ and attention_mask is not None
1433
+ and cache_length + input_ids.shape[1] > max_cache_length
1434
+ ):
1435
+ attention_mask = attention_mask[:, -max_cache_length:]
1436
+
1437
+ position_ids = kwargs.get("position_ids", None)
1438
+ if attention_mask is not None and position_ids is None:
1439
+ # create position_ids on the fly for batch generation
1440
+ position_ids = attention_mask.long().cumsum(-1) - 1
1441
+ position_ids.masked_fill_(attention_mask == 0, 1)
1442
+ if past_key_values:
1443
+ position_ids = position_ids[:, -input_ids.shape[1]:]
1444
+
1445
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1446
+ if inputs_embeds is not None and past_key_values is None:
1447
+ model_inputs = {"inputs_embeds": inputs_embeds}
1448
+ else:
1449
+ model_inputs = {"input_ids": input_ids}
1450
+
1451
+ model_inputs.update(
1452
+ {
1453
+ "position_ids": position_ids,
1454
+ "past_key_values": past_key_values,
1455
+ "use_cache": kwargs.get("use_cache"),
1456
+ "attention_mask": attention_mask,
1457
+ }
1458
+ )
1459
+ return model_inputs
1460
+
1461
+ @staticmethod
1462
+ def _reorder_cache(past_key_values, beam_idx):
1463
+ reordered_past = ()
1464
+ for layer_past in past_key_values:
1465
+ reordered_past += (
1466
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1467
+ )
1468
+ return reordered_past
1469
+
1470
+ @torch.inference_mode()
1471
+ def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
1472
+ max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None,
1473
+ **kwargs):
1474
+ if history is None:
1475
+ history = []
1476
+ if logits_processor:
1477
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1478
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1479
+ else:
1480
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1481
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1482
+
1483
+ history.append({"role": role, "content": query})
1484
+ history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False)
1485
+ inputs = tokenizer(history_str, return_tensors='pt').to(self.device)
1486
+ outputs = self.generate(**inputs, **gen_kwargs)
1487
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1488
+ response = tokenizer.decode(outputs)
1489
+ pattern = re.compile(r".*?(?=<AI>|<用户>)", re.DOTALL)
1490
+ matches = pattern.findall(response)
1491
+ if len(matches) > 0:
1492
+ response = matches[0]
1493
+ history.append({"role": "assistant", "content": response})
1494
+ return response, history