cgus commited on
Commit
fa0c79c
·
verified ·
1 Parent(s): abd8048

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: LittleInstructionMaker-4B-v0.1
4
+ datasets:
5
+ - cognitivecomputations/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split
6
+ - mlabonne/FineTome-100k
7
+ - Vezora/Open-Critic-GPT
8
+ - m-a-p/Code-Feedback
9
+ language:
10
+ - en
11
+ ---
12
+ # LittleInstructionMaker-4B-v0.2
13
+
14
+ > Now able to generate more complex instructions thanks to [cognitivecomputations/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split](https://huggingface.co/datasets/cognitivecomputations/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split) and [mlabonne/FineTome-100k](https://huggingface.co/datasets/mlabonne/FineTome-100k). It even does coding prompts now with help from [Vezora/Open-Critic-GPT](https://huggingface.co/datasets/Vezora/Open-Critic-GPT) and [m-a-p/Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback).
15
+
16
+
17
+ ### Benchmarks
18
+
19
+ | Tasks |Version|Filter|n-shot| Metric | Value | |Stderr|
20
+ |--------|------:|------|------|-----------------|-------:|---|-----:|
21
+ |eq_bench| 2.1|none |None |eqbench | 32.7345|± |3.4507|
22
+ | | |none |None |percent_parseable|100.0000|± |0.0000|
23
+ |winogrande| 1|none | 5|acc |0.7703|± |0.0118|
24
+
25
+
26
+ ### Usage example
27
+
28
+ ```python
29
+ import torch
30
+ from unsloth import FastLanguageModel
31
+
32
+ model, tokenizer = FastLanguageModel.from_pretrained(
33
+ "trollek/LittleInstructionMaker-4B-v0.2",
34
+ dtype=torch.bfloat16,
35
+ load_in_4bit=True,
36
+ max_seq_length=8192
37
+ )
38
+ FastLanguageModel.for_inference(model)
39
+
40
+ def instruction_generator(system_message: str, num_instructions: int):
41
+ if system_message is "":
42
+ raise ValueError
43
+ if num_instructions < 1:
44
+ raise ValueError
45
+ magpie_template = f"<|im_start|>system\n{system_message}<|im_end|>\n<|im_start|>user\n"
46
+ input_ids = tokenizer(magpie_template, return_tensors="pt").input_ids.to("cuda")
47
+ for idx in range(num_instructions):
48
+ generated_ids = model.generate(input_ids, max_new_tokens=512, temperature=0.65, repetition_penalty=1.1, do_sample=True, eos_token_id=tokenizer.eos_token_id)
49
+ response = tokenizer.decode(generated_ids[0][input_ids.shape[-1]:], skip_special_tokens=True, clean_up_tokenization_space=True)
50
+ yield response
51
+
52
+ for instruct in instruction_generator("You are an AI coding assistant.", 2):
53
+ print(instruct)
54
+ ```
55
+ ```
56
+ Write a Python function that generates a random password of length 10 consisting of lowercase letters, uppercase letters, and special characters. The function should also check if the generated password meets the following criteria:
57
+ - At least one letter must be in uppercase.
58
+ - At least two numbers must be included.
59
+ - At least one special character should be present (a symbol such as !@#$%^&*).
60
+ The function should return the generated password along with its length, whether it satisfies all the criteria or not.
61
+ ```
62
+
63
+ ```
64
+ You are given a list of integers, `nums`, that contains both positive and negative numbers. You need to write a function `median` to find the median of the numbers in the list. The median is defined as the middle number when the numbers are arranged in ascending order. If there is an even number of elements in the list, the median will be the average of the two middle numbers.
65
+
66
+ Write a function `median(nums: List[int]) -> int` to find the median of the given list.
67
+
68
+ Example 1:
69
+ Input: nums = [5, -10, 4, 0, 7]
70
+ Output: 4
71
+ Explanation: After sorting the list, we have [-10, 0, 4, 5, 7]. The middle element is 4, so the median is 4.
72
+
73
+ Example 2:
74
+ Input: nums = [1, 2, 3, 4, 5]
75
+ Output: 3
76
+ Explanation: After sorting the list, we have [1, 2, 3, 4, 5]. There are five elements, so the median is 3.
77
+
78
+ ```