File size: 2,737 Bytes
e031246
 
 
 
f556a40
 
e031246
 
 
 
 
 
 
 
 
 
 
 
 
 
f556a40
e031246
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
library_name: peft
tags:
- llama-factory
- lora
- trl
- dpo
- generated_from_trainer
base_model: tiiuae/falcon-7b-instruct
model-index:
- name: Falcon-7B-Instruct-ORPO-SALT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Falcon-7B-Instruct-ORPO-SALT

This model is a fine-tuned version of [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) on the dpo_mix_en and the bct_non_cot_dpo_1000 datasets.
It achieves the following results on the evaluation set:
- Loss: 1.4485
- Rewards/chosen: -0.1373
- Rewards/rejected: -0.1429
- Rewards/accuracies: 0.4809
- Rewards/margins: 0.0056
- Logps/rejected: -1.4290
- Logps/chosen: -1.3726
- Logits/rejected: -14.3178
- Logits/chosen: -14.2778
- Sft Loss: 1.3726
- Odds Ratio Loss: 0.7590

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:|
| 1.5005        | 0.8082 | 500  | 1.5202          | -0.1444        | -0.1490          | 0.4818             | 0.0046          | -1.4898        | -1.4436      | -14.2657        | -14.2276      | 1.4436   | 0.7658          |
| 1.3401        | 1.6165 | 1000 | 1.4635          | -0.1387        | -0.1442          | 0.4836             | 0.0055          | -1.4423        | -1.3875      | -14.3083        | -14.2685      | 1.3875   | 0.7603          |
| 1.446         | 2.4247 | 1500 | 1.4485          | -0.1373        | -0.1429          | 0.4809             | 0.0056          | -1.4290        | -1.3726      | -14.3178        | -14.2778      | 1.3726   | 0.7590          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.1
- Pytorch 2.3.0
- Datasets 2.19.0
- Tokenizers 0.19.1