|
{"current_steps": 10, "total_steps": 1854, "loss": 1.8299, "accuracy": 0.518750011920929, "learning_rate": 4.999648198770648e-06, "epoch": 0.01616488179430188, "percentage": 0.54, "elapsed_time": "0:01:30", "remaining_time": "4:37:14"} |
|
{"current_steps": 20, "total_steps": 1854, "loss": 2.0003, "accuracy": 0.48750001192092896, "learning_rate": 4.998578646361359e-06, "epoch": 0.03232976358860376, "percentage": 1.08, "elapsed_time": "0:03:02", "remaining_time": "4:39:09"} |
|
{"current_steps": 30, "total_steps": 1854, "loss": 1.9128, "accuracy": 0.46875, "learning_rate": 4.996791614004449e-06, "epoch": 0.04849464538290564, "percentage": 1.62, "elapsed_time": "0:04:37", "remaining_time": "4:41:02"} |
|
{"current_steps": 40, "total_steps": 1854, "loss": 2.0298, "accuracy": 0.45625001192092896, "learning_rate": 4.994287614855618e-06, "epoch": 0.06465952717720752, "percentage": 2.16, "elapsed_time": "0:06:01", "remaining_time": "4:33:35"} |
|
{"current_steps": 50, "total_steps": 1854, "loss": 2.0958, "accuracy": 0.4124999940395355, "learning_rate": 4.991067367951343e-06, "epoch": 0.0808244089715094, "percentage": 2.7, "elapsed_time": "0:07:45", "remaining_time": "4:40:06"} |
|
{"current_steps": 60, "total_steps": 1854, "loss": 1.9577, "accuracy": 0.5, "learning_rate": 4.987131798002389e-06, "epoch": 0.09698929076581128, "percentage": 3.24, "elapsed_time": "0:09:15", "remaining_time": "4:36:40"} |
|
{"current_steps": 70, "total_steps": 1854, "loss": 2.1089, "accuracy": 0.42500001192092896, "learning_rate": 4.982482035128285e-06, "epoch": 0.11315417256011315, "percentage": 3.78, "elapsed_time": "0:10:48", "remaining_time": "4:35:18"} |
|
{"current_steps": 80, "total_steps": 1854, "loss": 1.7468, "accuracy": 0.5375000238418579, "learning_rate": 4.9771194145328e-06, "epoch": 0.12931905435441504, "percentage": 4.31, "elapsed_time": "0:12:21", "remaining_time": "4:34:00"} |
|
{"current_steps": 90, "total_steps": 1854, "loss": 1.9067, "accuracy": 0.4375, "learning_rate": 4.971045476120532e-06, "epoch": 0.1454839361487169, "percentage": 4.85, "elapsed_time": "0:13:55", "remaining_time": "4:32:49"} |
|
{"current_steps": 100, "total_steps": 1854, "loss": 1.8297, "accuracy": 0.5062500238418579, "learning_rate": 4.964261964054713e-06, "epoch": 0.1616488179430188, "percentage": 5.39, "elapsed_time": "0:15:28", "remaining_time": "4:31:21"} |
|
{"current_steps": 110, "total_steps": 1854, "loss": 1.7844, "accuracy": 0.512499988079071, "learning_rate": 4.956770826256372e-06, "epoch": 0.17781369973732067, "percentage": 5.93, "elapsed_time": "0:17:02", "remaining_time": "4:30:05"} |
|
{"current_steps": 120, "total_steps": 1854, "loss": 1.7682, "accuracy": 0.5, "learning_rate": 4.94857421384497e-06, "epoch": 0.19397858153162256, "percentage": 6.47, "elapsed_time": "0:18:36", "remaining_time": "4:28:53"} |
|
{"current_steps": 130, "total_steps": 1854, "loss": 1.7352, "accuracy": 0.48124998807907104, "learning_rate": 4.939674480520701e-06, "epoch": 0.21014346332592443, "percentage": 7.01, "elapsed_time": "0:20:12", "remaining_time": "4:27:58"} |
|
{"current_steps": 140, "total_steps": 1854, "loss": 1.8234, "accuracy": 0.4625000059604645, "learning_rate": 4.930074181888613e-06, "epoch": 0.2263083451202263, "percentage": 7.55, "elapsed_time": "0:21:53", "remaining_time": "4:28:06"} |
|
{"current_steps": 150, "total_steps": 1854, "loss": 1.7178, "accuracy": 0.4625000059604645, "learning_rate": 4.91977607472475e-06, "epoch": 0.2424732269145282, "percentage": 8.09, "elapsed_time": "0:23:21", "remaining_time": "4:25:17"} |
|
{"current_steps": 160, "total_steps": 1854, "loss": 1.6837, "accuracy": 0.512499988079071, "learning_rate": 4.908783116184534e-06, "epoch": 0.2586381087088301, "percentage": 8.63, "elapsed_time": "0:24:54", "remaining_time": "4:23:47"} |
|
{"current_steps": 170, "total_steps": 1854, "loss": 1.6438, "accuracy": 0.5062500238418579, "learning_rate": 4.897098462953598e-06, "epoch": 0.27480299050313195, "percentage": 9.17, "elapsed_time": "0:26:27", "remaining_time": "4:22:07"} |
|
{"current_steps": 180, "total_steps": 1854, "loss": 1.5969, "accuracy": 0.574999988079071, "learning_rate": 4.884725470341331e-06, "epoch": 0.2909678722974338, "percentage": 9.71, "elapsed_time": "0:27:57", "remaining_time": "4:20:03"} |
|
{"current_steps": 190, "total_steps": 1854, "loss": 1.6442, "accuracy": 0.45625001192092896, "learning_rate": 4.871667691317377e-06, "epoch": 0.3071327540917357, "percentage": 10.25, "elapsed_time": "0:29:33", "remaining_time": "4:18:50"} |
|
{"current_steps": 200, "total_steps": 1854, "loss": 1.5575, "accuracy": 0.512499988079071, "learning_rate": 4.857928875491392e-06, "epoch": 0.3232976358860376, "percentage": 10.79, "elapsed_time": "0:31:02", "remaining_time": "4:16:42"} |
|
{"current_steps": 210, "total_steps": 1854, "loss": 1.5606, "accuracy": 0.4937500059604645, "learning_rate": 4.843512968036314e-06, "epoch": 0.33946251768033947, "percentage": 11.33, "elapsed_time": "0:32:31", "remaining_time": "4:14:34"} |
|
{"current_steps": 220, "total_steps": 1854, "loss": 1.6726, "accuracy": 0.518750011920929, "learning_rate": 4.828424108555486e-06, "epoch": 0.35562739947464134, "percentage": 11.87, "elapsed_time": "0:34:04", "remaining_time": "4:13:03"} |
|
{"current_steps": 230, "total_steps": 1854, "loss": 1.599, "accuracy": 0.45625001192092896, "learning_rate": 4.812666629893957e-06, "epoch": 0.3717922812689432, "percentage": 12.41, "elapsed_time": "0:35:35", "remaining_time": "4:11:19"} |
|
{"current_steps": 240, "total_steps": 1854, "loss": 1.6382, "accuracy": 0.4625000059604645, "learning_rate": 4.796245056894273e-06, "epoch": 0.3879571630632451, "percentage": 12.94, "elapsed_time": "0:37:14", "remaining_time": "4:10:29"} |
|
{"current_steps": 250, "total_steps": 1854, "loss": 1.5308, "accuracy": 0.550000011920929, "learning_rate": 4.779164105097148e-06, "epoch": 0.404122044857547, "percentage": 13.48, "elapsed_time": "0:38:51", "remaining_time": "4:09:22"} |
|
{"current_steps": 260, "total_steps": 1854, "loss": 1.5664, "accuracy": 0.518750011920929, "learning_rate": 4.761428679387373e-06, "epoch": 0.42028692665184886, "percentage": 14.02, "elapsed_time": "0:40:26", "remaining_time": "4:07:55"} |
|
{"current_steps": 270, "total_steps": 1854, "loss": 1.5916, "accuracy": 0.5062500238418579, "learning_rate": 4.7430438725853515e-06, "epoch": 0.4364518084461507, "percentage": 14.56, "elapsed_time": "0:42:02", "remaining_time": "4:06:38"} |
|
{"current_steps": 280, "total_steps": 1854, "loss": 1.5473, "accuracy": 0.45625001192092896, "learning_rate": 4.724014963984669e-06, "epoch": 0.4526166902404526, "percentage": 15.1, "elapsed_time": "0:43:40", "remaining_time": "4:05:30"} |
|
{"current_steps": 290, "total_steps": 1854, "loss": 1.4462, "accuracy": 0.48124998807907104, "learning_rate": 4.704347417836116e-06, "epoch": 0.4687815720347545, "percentage": 15.64, "elapsed_time": "0:45:12", "remaining_time": "4:03:50"} |
|
{"current_steps": 300, "total_steps": 1854, "loss": 1.456, "accuracy": 0.44999998807907104, "learning_rate": 4.684046881778603e-06, "epoch": 0.4849464538290564, "percentage": 16.18, "elapsed_time": "0:46:43", "remaining_time": "4:02:00"} |
|
{"current_steps": 310, "total_steps": 1854, "loss": 1.5057, "accuracy": 0.5249999761581421, "learning_rate": 4.663119185217409e-06, "epoch": 0.5011113356233583, "percentage": 16.72, "elapsed_time": "0:48:19", "remaining_time": "4:00:40"} |
|
{"current_steps": 320, "total_steps": 1854, "loss": 1.3866, "accuracy": 0.53125, "learning_rate": 4.641570337650232e-06, "epoch": 0.5172762174176602, "percentage": 17.26, "elapsed_time": "0:49:52", "remaining_time": "3:59:03"} |
|
{"current_steps": 330, "total_steps": 1854, "loss": 1.5835, "accuracy": 0.4625000059604645, "learning_rate": 4.61940652694154e-06, "epoch": 0.533441099211962, "percentage": 17.8, "elapsed_time": "0:51:30", "remaining_time": "3:57:53"} |
|
{"current_steps": 340, "total_steps": 1854, "loss": 1.6054, "accuracy": 0.512499988079071, "learning_rate": 4.596634117545689e-06, "epoch": 0.5496059810062639, "percentage": 18.34, "elapsed_time": "0:53:02", "remaining_time": "3:56:12"} |
|
{"current_steps": 350, "total_steps": 1854, "loss": 1.546, "accuracy": 0.5249999761581421, "learning_rate": 4.573259648679335e-06, "epoch": 0.5657708628005658, "percentage": 18.88, "elapsed_time": "0:54:41", "remaining_time": "3:54:59"} |
|
{"current_steps": 360, "total_steps": 1854, "loss": 1.5233, "accuracy": 0.5, "learning_rate": 4.549289832443663e-06, "epoch": 0.5819357445948676, "percentage": 19.42, "elapsed_time": "0:56:18", "remaining_time": "3:53:40"} |
|
{"current_steps": 370, "total_steps": 1854, "loss": 1.4381, "accuracy": 0.44999998807907104, "learning_rate": 4.524731551896978e-06, "epoch": 0.5981006263891695, "percentage": 19.96, "elapsed_time": "0:57:52", "remaining_time": "3:52:08"} |
|
{"current_steps": 380, "total_steps": 1854, "loss": 1.437, "accuracy": 0.53125, "learning_rate": 4.4995918590781925e-06, "epoch": 0.6142655081834714, "percentage": 20.5, "elapsed_time": "0:59:25", "remaining_time": "3:50:31"} |
|
{"current_steps": 390, "total_steps": 1854, "loss": 1.4849, "accuracy": 0.550000011920929, "learning_rate": 4.473877972981797e-06, "epoch": 0.6304303899777733, "percentage": 21.04, "elapsed_time": "1:01:02", "remaining_time": "3:49:09"} |
|
{"current_steps": 400, "total_steps": 1854, "loss": 1.3936, "accuracy": 0.48124998807907104, "learning_rate": 4.447597277484894e-06, "epoch": 0.6465952717720752, "percentage": 21.57, "elapsed_time": "1:02:32", "remaining_time": "3:47:19"} |
|
{"current_steps": 410, "total_steps": 1854, "loss": 1.5684, "accuracy": 0.4625000059604645, "learning_rate": 4.42075731922687e-06, "epoch": 0.6627601535663771, "percentage": 22.11, "elapsed_time": "1:04:04", "remaining_time": "3:45:40"} |
|
{"current_steps": 420, "total_steps": 1854, "loss": 1.4095, "accuracy": 0.48750001192092896, "learning_rate": 4.3933658054423465e-06, "epoch": 0.6789250353606789, "percentage": 22.65, "elapsed_time": "1:05:37", "remaining_time": "3:44:03"} |
|
{"current_steps": 430, "total_steps": 1854, "loss": 1.6431, "accuracy": 0.512499988079071, "learning_rate": 4.365430601748003e-06, "epoch": 0.6950899171549808, "percentage": 23.19, "elapsed_time": "1:07:08", "remaining_time": "3:42:21"} |
|
{"current_steps": 440, "total_steps": 1854, "loss": 1.4506, "accuracy": 0.4625000059604645, "learning_rate": 4.336959729883925e-06, "epoch": 0.7112547989492827, "percentage": 23.73, "elapsed_time": "1:08:41", "remaining_time": "3:40:43"} |
|
{"current_steps": 450, "total_steps": 1854, "loss": 1.5134, "accuracy": 0.45625001192092896, "learning_rate": 4.307961365410118e-06, "epoch": 0.7274196807435845, "percentage": 24.27, "elapsed_time": "1:10:19", "remaining_time": "3:39:24"} |
|
{"current_steps": 460, "total_steps": 1854, "loss": 1.4406, "accuracy": 0.550000011920929, "learning_rate": 4.278443835358854e-06, "epoch": 0.7435845625378864, "percentage": 24.81, "elapsed_time": "1:11:54", "remaining_time": "3:37:53"} |
|
{"current_steps": 470, "total_steps": 1854, "loss": 1.4775, "accuracy": 0.4437499940395355, "learning_rate": 4.248415615843523e-06, "epoch": 0.7597494443321883, "percentage": 25.35, "elapsed_time": "1:13:21", "remaining_time": "3:36:00"} |
|
{"current_steps": 480, "total_steps": 1854, "loss": 1.4137, "accuracy": 0.5562499761581421, "learning_rate": 4.217885329624666e-06, "epoch": 0.7759143261264903, "percentage": 25.89, "elapsed_time": "1:14:55", "remaining_time": "3:34:29"} |
|
{"current_steps": 490, "total_steps": 1854, "loss": 1.4904, "accuracy": 0.5, "learning_rate": 4.186861743633911e-06, "epoch": 0.7920792079207921, "percentage": 26.43, "elapsed_time": "1:16:26", "remaining_time": "3:32:46"} |
|
{"current_steps": 500, "total_steps": 1854, "loss": 1.5005, "accuracy": 0.46875, "learning_rate": 4.155353766456497e-06, "epoch": 0.808244089715094, "percentage": 26.97, "elapsed_time": "1:18:04", "remaining_time": "3:31:26"} |
|
{"current_steps": 500, "total_steps": 1854, "eval_loss": 1.5202080011367798, "epoch": 0.808244089715094, "percentage": 26.97, "elapsed_time": "1:21:32", "remaining_time": "3:40:48"} |
|
{"current_steps": 510, "total_steps": 1854, "loss": 1.4927, "accuracy": 0.5, "learning_rate": 4.123370445773134e-06, "epoch": 0.8244089715093958, "percentage": 27.51, "elapsed_time": "1:23:09", "remaining_time": "3:39:08"} |
|
{"current_steps": 520, "total_steps": 1854, "loss": 1.559, "accuracy": 0.5375000238418579, "learning_rate": 4.090920965761906e-06, "epoch": 0.8405738533036977, "percentage": 28.05, "elapsed_time": "1:24:37", "remaining_time": "3:37:06"} |
|
{"current_steps": 530, "total_steps": 1854, "loss": 1.4967, "accuracy": 0.5375000238418579, "learning_rate": 4.058014644460991e-06, "epoch": 0.8567387350979996, "percentage": 28.59, "elapsed_time": "1:26:00", "remaining_time": "3:34:52"} |
|
{"current_steps": 540, "total_steps": 1854, "loss": 1.4748, "accuracy": 0.4749999940395355, "learning_rate": 4.024660931092939e-06, "epoch": 0.8729036168923014, "percentage": 29.13, "elapsed_time": "1:27:36", "remaining_time": "3:33:10"} |
|
{"current_steps": 550, "total_steps": 1854, "loss": 1.5359, "accuracy": 0.550000011920929, "learning_rate": 3.990869403351272e-06, "epoch": 0.8890684986866033, "percentage": 29.67, "elapsed_time": "1:29:11", "remaining_time": "3:31:28"} |
|
{"current_steps": 560, "total_steps": 1854, "loss": 1.5325, "accuracy": 0.42500001192092896, "learning_rate": 3.956649764650206e-06, "epoch": 0.9052333804809052, "percentage": 30.2, "elapsed_time": "1:30:54", "remaining_time": "3:30:03"} |
|
{"current_steps": 570, "total_steps": 1854, "loss": 1.4679, "accuracy": 0.5249999761581421, "learning_rate": 3.92201184133826e-06, "epoch": 0.9213982622752072, "percentage": 30.74, "elapsed_time": "1:32:24", "remaining_time": "3:28:09"} |
|
{"current_steps": 580, "total_steps": 1854, "loss": 1.4501, "accuracy": 0.5249999761581421, "learning_rate": 3.886965579876572e-06, "epoch": 0.937563144069509, "percentage": 31.28, "elapsed_time": "1:33:56", "remaining_time": "3:26:21"} |
|
{"current_steps": 590, "total_steps": 1854, "loss": 1.4998, "accuracy": 0.45625001192092896, "learning_rate": 3.851521043982716e-06, "epoch": 0.9537280258638109, "percentage": 31.82, "elapsed_time": "1:35:31", "remaining_time": "3:24:39"} |
|
{"current_steps": 600, "total_steps": 1854, "loss": 1.5191, "accuracy": 0.5, "learning_rate": 3.81568841174086e-06, "epoch": 0.9698929076581128, "percentage": 32.36, "elapsed_time": "1:37:12", "remaining_time": "3:23:09"} |
|
{"current_steps": 610, "total_steps": 1854, "loss": 1.4561, "accuracy": 0.44999998807907104, "learning_rate": 3.7794779726790664e-06, "epoch": 0.9860577894524146, "percentage": 32.9, "elapsed_time": "1:38:46", "remaining_time": "3:21:25"} |
|
{"current_steps": 620, "total_steps": 1854, "loss": 1.4924, "accuracy": 0.53125, "learning_rate": 3.7429001248146096e-06, "epoch": 1.0022226712467166, "percentage": 33.44, "elapsed_time": "1:40:25", "remaining_time": "3:19:51"} |
|
{"current_steps": 630, "total_steps": 1854, "loss": 1.4861, "accuracy": 0.5, "learning_rate": 3.7059653716681227e-06, "epoch": 1.0183875530410185, "percentage": 33.98, "elapsed_time": "1:41:56", "remaining_time": "3:18:04"} |
|
{"current_steps": 640, "total_steps": 1854, "loss": 1.4348, "accuracy": 0.5562499761581421, "learning_rate": 3.668684319247463e-06, "epoch": 1.0345524348353203, "percentage": 34.52, "elapsed_time": "1:43:26", "remaining_time": "3:16:12"} |
|
{"current_steps": 650, "total_steps": 1854, "loss": 1.3979, "accuracy": 0.5062500238418579, "learning_rate": 3.6310676730021373e-06, "epoch": 1.0507173166296222, "percentage": 35.06, "elapsed_time": "1:44:56", "remaining_time": "3:14:23"} |
|
{"current_steps": 660, "total_steps": 1854, "loss": 1.4976, "accuracy": 0.4749999940395355, "learning_rate": 3.593126234749178e-06, "epoch": 1.066882198423924, "percentage": 35.6, "elapsed_time": "1:46:32", "remaining_time": "3:12:44"} |
|
{"current_steps": 670, "total_steps": 1854, "loss": 1.4767, "accuracy": 0.5625, "learning_rate": 3.554870899571343e-06, "epoch": 1.083047080218226, "percentage": 36.14, "elapsed_time": "1:48:07", "remaining_time": "3:11:04"} |
|
{"current_steps": 680, "total_steps": 1854, "loss": 1.4506, "accuracy": 0.46875, "learning_rate": 3.5163126526885373e-06, "epoch": 1.0992119620125278, "percentage": 36.68, "elapsed_time": "1:49:42", "remaining_time": "3:09:24"} |
|
{"current_steps": 690, "total_steps": 1854, "loss": 1.4783, "accuracy": 0.518750011920929, "learning_rate": 3.4774625663033484e-06, "epoch": 1.1153768438068297, "percentage": 37.22, "elapsed_time": "1:51:14", "remaining_time": "3:07:39"} |
|
{"current_steps": 700, "total_steps": 1854, "loss": 1.4108, "accuracy": 0.4625000059604645, "learning_rate": 3.4383317964216067e-06, "epoch": 1.1315417256011315, "percentage": 37.76, "elapsed_time": "1:52:50", "remaining_time": "3:06:01"} |
|
{"current_steps": 710, "total_steps": 1854, "loss": 1.5203, "accuracy": 0.5375000238418579, "learning_rate": 3.398931579648877e-06, "epoch": 1.1477066073954334, "percentage": 38.3, "elapsed_time": "1:54:31", "remaining_time": "3:04:31"} |
|
{"current_steps": 720, "total_steps": 1854, "loss": 1.421, "accuracy": 0.4625000059604645, "learning_rate": 3.359273229963813e-06, "epoch": 1.1638714891897353, "percentage": 38.83, "elapsed_time": "1:56:05", "remaining_time": "3:02:51"} |
|
{"current_steps": 730, "total_steps": 1854, "loss": 1.4538, "accuracy": 0.45625001192092896, "learning_rate": 3.319368135469285e-06, "epoch": 1.1800363709840371, "percentage": 39.37, "elapsed_time": "1:57:34", "remaining_time": "3:01:01"} |
|
{"current_steps": 740, "total_steps": 1854, "loss": 1.3866, "accuracy": 0.612500011920929, "learning_rate": 3.279227755122228e-06, "epoch": 1.196201252778339, "percentage": 39.91, "elapsed_time": "1:59:10", "remaining_time": "2:59:24"} |
|
{"current_steps": 750, "total_steps": 1854, "loss": 1.502, "accuracy": 0.48750001192092896, "learning_rate": 3.2388636154431417e-06, "epoch": 1.2123661345726409, "percentage": 40.45, "elapsed_time": "2:00:50", "remaining_time": "2:57:52"} |
|
{"current_steps": 760, "total_steps": 1854, "loss": 1.4829, "accuracy": 0.4749999940395355, "learning_rate": 3.198287307206192e-06, "epoch": 1.2285310163669427, "percentage": 40.99, "elapsed_time": "2:02:23", "remaining_time": "2:56:11"} |
|
{"current_steps": 770, "total_steps": 1854, "loss": 1.4004, "accuracy": 0.5249999761581421, "learning_rate": 3.157510482110856e-06, "epoch": 1.2446958981612446, "percentage": 41.53, "elapsed_time": "2:03:59", "remaining_time": "2:54:33"} |
|
{"current_steps": 780, "total_steps": 1854, "loss": 1.588, "accuracy": 0.4749999940395355, "learning_rate": 3.116544849436077e-06, "epoch": 1.2608607799555465, "percentage": 42.07, "elapsed_time": "2:05:36", "remaining_time": "2:52:57"} |
|
{"current_steps": 790, "total_steps": 1854, "loss": 1.4162, "accuracy": 0.550000011920929, "learning_rate": 3.0754021726778848e-06, "epoch": 1.2770256617498483, "percentage": 42.61, "elapsed_time": "2:07:11", "remaining_time": "2:51:18"} |
|
{"current_steps": 800, "total_steps": 1854, "loss": 1.5077, "accuracy": 0.4375, "learning_rate": 3.0340942661714463e-06, "epoch": 1.2931905435441502, "percentage": 43.15, "elapsed_time": "2:08:48", "remaining_time": "2:49:41"} |
|
{"current_steps": 810, "total_steps": 1854, "loss": 1.4207, "accuracy": 0.550000011920929, "learning_rate": 2.992632991698512e-06, "epoch": 1.3093554253384523, "percentage": 43.69, "elapsed_time": "2:10:19", "remaining_time": "2:47:59"} |
|
{"current_steps": 820, "total_steps": 1854, "loss": 1.4155, "accuracy": 0.48124998807907104, "learning_rate": 2.9510302550812537e-06, "epoch": 1.3255203071327541, "percentage": 44.23, "elapsed_time": "2:11:52", "remaining_time": "2:46:17"} |
|
{"current_steps": 830, "total_steps": 1854, "loss": 1.3858, "accuracy": 0.48124998807907104, "learning_rate": 2.9092980027634325e-06, "epoch": 1.341685188927056, "percentage": 44.77, "elapsed_time": "2:13:27", "remaining_time": "2:44:38"} |
|
{"current_steps": 840, "total_steps": 1854, "loss": 1.4355, "accuracy": 0.512499988079071, "learning_rate": 2.867448218379927e-06, "epoch": 1.3578500707213579, "percentage": 45.31, "elapsed_time": "2:14:57", "remaining_time": "2:42:55"} |
|
{"current_steps": 850, "total_steps": 1854, "loss": 1.4789, "accuracy": 0.5062500238418579, "learning_rate": 2.825492919315559e-06, "epoch": 1.3740149525156597, "percentage": 45.85, "elapsed_time": "2:16:31", "remaining_time": "2:41:16"} |
|
{"current_steps": 860, "total_steps": 1854, "loss": 1.4297, "accuracy": 0.581250011920929, "learning_rate": 2.7834441532542482e-06, "epoch": 1.3901798343099616, "percentage": 46.39, "elapsed_time": "2:18:08", "remaining_time": "2:39:39"} |
|
{"current_steps": 870, "total_steps": 1854, "loss": 1.4755, "accuracy": 0.5, "learning_rate": 2.74131399471945e-06, "epoch": 1.4063447161042635, "percentage": 46.93, "elapsed_time": "2:19:40", "remaining_time": "2:37:59"} |
|
{"current_steps": 880, "total_steps": 1854, "loss": 1.4645, "accuracy": 0.4625000059604645, "learning_rate": 2.6991145416068947e-06, "epoch": 1.4225095978985653, "percentage": 47.46, "elapsed_time": "2:21:19", "remaining_time": "2:36:25"} |
|
{"current_steps": 890, "total_steps": 1854, "loss": 1.3933, "accuracy": 0.550000011920929, "learning_rate": 2.6568579117106143e-06, "epoch": 1.4386744796928672, "percentage": 48.0, "elapsed_time": "2:22:56", "remaining_time": "2:34:49"} |
|
{"current_steps": 900, "total_steps": 1854, "loss": 1.4466, "accuracy": 0.5, "learning_rate": 2.6145562392432544e-06, "epoch": 1.454839361487169, "percentage": 48.54, "elapsed_time": "2:24:28", "remaining_time": "2:33:08"} |
|
{"current_steps": 910, "total_steps": 1854, "loss": 1.3653, "accuracy": 0.48124998807907104, "learning_rate": 2.5722216713516682e-06, "epoch": 1.471004243281471, "percentage": 49.08, "elapsed_time": "2:25:56", "remaining_time": "2:31:23"} |
|
{"current_steps": 920, "total_steps": 1854, "loss": 1.4084, "accuracy": 0.518750011920929, "learning_rate": 2.5298663646288064e-06, "epoch": 1.4871691250757728, "percentage": 49.62, "elapsed_time": "2:27:35", "remaining_time": "2:29:50"} |
|
{"current_steps": 930, "total_steps": 1854, "loss": 1.3983, "accuracy": 0.4937500059604645, "learning_rate": 2.487502481622879e-06, "epoch": 1.503334006870075, "percentage": 50.16, "elapsed_time": "2:29:04", "remaining_time": "2:28:07"} |
|
{"current_steps": 940, "total_steps": 1854, "loss": 1.508, "accuracy": 0.44999998807907104, "learning_rate": 2.4451421873448253e-06, "epoch": 1.5194988886643768, "percentage": 50.7, "elapsed_time": "2:30:38", "remaining_time": "2:26:28"} |
|
{"current_steps": 950, "total_steps": 1854, "loss": 1.48, "accuracy": 0.44999998807907104, "learning_rate": 2.40279764577506e-06, "epoch": 1.5356637704586786, "percentage": 51.24, "elapsed_time": "2:32:14", "remaining_time": "2:24:52"} |
|
{"current_steps": 960, "total_steps": 1854, "loss": 1.377, "accuracy": 0.512499988079071, "learning_rate": 2.3604810163705242e-06, "epoch": 1.5518286522529805, "percentage": 51.78, "elapsed_time": "2:33:49", "remaining_time": "2:23:14"} |
|
{"current_steps": 970, "total_steps": 1854, "loss": 1.3349, "accuracy": 0.5062500238418579, "learning_rate": 2.3182044505730364e-06, "epoch": 1.5679935340472824, "percentage": 52.32, "elapsed_time": "2:35:22", "remaining_time": "2:21:35"} |
|
{"current_steps": 980, "total_steps": 1854, "loss": 1.3406, "accuracy": 0.5062500238418579, "learning_rate": 2.275980088319941e-06, "epoch": 1.5841584158415842, "percentage": 52.86, "elapsed_time": "2:36:56", "remaining_time": "2:19:57"} |
|
{"current_steps": 990, "total_steps": 1854, "loss": 1.3345, "accuracy": 0.5, "learning_rate": 2.2338200545580577e-06, "epoch": 1.600323297635886, "percentage": 53.4, "elapsed_time": "2:38:27", "remaining_time": "2:18:17"} |
|
{"current_steps": 1000, "total_steps": 1854, "loss": 1.3401, "accuracy": 0.4437499940395355, "learning_rate": 2.191736455761947e-06, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "2:39:58", "remaining_time": "2:16:36"} |
|
{"current_steps": 1000, "total_steps": 1854, "eval_loss": 1.4635207653045654, "epoch": 1.616488179430188, "percentage": 53.94, "elapsed_time": "2:43:26", "remaining_time": "2:19:34"} |
|
{"current_steps": 1010, "total_steps": 1854, "loss": 1.4937, "accuracy": 0.581250011920929, "learning_rate": 2.1497413764574673e-06, "epoch": 1.6326530612244898, "percentage": 54.48, "elapsed_time": "2:45:12", "remaining_time": "2:18:02"} |
|
{"current_steps": 1020, "total_steps": 1854, "loss": 1.453, "accuracy": 0.4749999940395355, "learning_rate": 2.1078468757516395e-06, "epoch": 1.6488179430187917, "percentage": 55.02, "elapsed_time": "2:46:44", "remaining_time": "2:16:20"} |
|
{"current_steps": 1030, "total_steps": 1854, "loss": 1.3999, "accuracy": 0.4375, "learning_rate": 2.0660649838698145e-06, "epoch": 1.6649828248130936, "percentage": 55.56, "elapsed_time": "2:48:17", "remaining_time": "2:14:38"} |
|
{"current_steps": 1040, "total_steps": 1854, "loss": 1.4558, "accuracy": 0.5625, "learning_rate": 2.0244076987011284e-06, "epoch": 1.6811477066073954, "percentage": 56.09, "elapsed_time": "2:49:53", "remaining_time": "2:12:58"} |
|
{"current_steps": 1050, "total_steps": 1854, "loss": 1.4359, "accuracy": 0.4312500059604645, "learning_rate": 1.982886982353251e-06, "epoch": 1.6973125884016973, "percentage": 56.63, "elapsed_time": "2:51:28", "remaining_time": "2:11:17"} |
|
{"current_steps": 1060, "total_steps": 1854, "loss": 1.3807, "accuracy": 0.550000011920929, "learning_rate": 1.941514757717392e-06, "epoch": 1.7134774701959992, "percentage": 57.17, "elapsed_time": "2:53:06", "remaining_time": "2:09:39"} |
|
{"current_steps": 1070, "total_steps": 1854, "loss": 1.4747, "accuracy": 0.5, "learning_rate": 1.9003029050445953e-06, "epoch": 1.729642351990301, "percentage": 57.71, "elapsed_time": "2:54:46", "remaining_time": "2:08:03"} |
|
{"current_steps": 1080, "total_steps": 1854, "loss": 1.4047, "accuracy": 0.48750001192092896, "learning_rate": 1.8592632585342523e-06, "epoch": 1.745807233784603, "percentage": 58.25, "elapsed_time": "2:56:19", "remaining_time": "2:06:21"} |
|
{"current_steps": 1090, "total_steps": 1854, "loss": 1.3443, "accuracy": 0.4749999940395355, "learning_rate": 1.8184076029358527e-06, "epoch": 1.7619721155789048, "percentage": 58.79, "elapsed_time": "2:57:51", "remaining_time": "2:04:39"} |
|
{"current_steps": 1100, "total_steps": 1854, "loss": 1.4231, "accuracy": 0.5062500238418579, "learning_rate": 1.7777476701649318e-06, "epoch": 1.7781369973732066, "percentage": 59.33, "elapsed_time": "2:59:28", "remaining_time": "2:03:01"} |
|
{"current_steps": 1110, "total_steps": 1854, "loss": 1.3577, "accuracy": 0.4937500059604645, "learning_rate": 1.7372951359341925e-06, "epoch": 1.7943018791675085, "percentage": 59.87, "elapsed_time": "3:00:58", "remaining_time": "2:01:18"} |
|
{"current_steps": 1120, "total_steps": 1854, "loss": 1.4435, "accuracy": 0.5062500238418579, "learning_rate": 1.6970616164007547e-06, "epoch": 1.8104667609618104, "percentage": 60.41, "elapsed_time": "3:02:23", "remaining_time": "1:59:31"} |
|
{"current_steps": 1130, "total_steps": 1854, "loss": 1.4182, "accuracy": 0.518750011920929, "learning_rate": 1.6570586648305276e-06, "epoch": 1.8266316427561122, "percentage": 60.95, "elapsed_time": "3:03:54", "remaining_time": "1:57:49"} |
|
{"current_steps": 1140, "total_steps": 1854, "loss": 1.4288, "accuracy": 0.5249999761581421, "learning_rate": 1.6172977682806151e-06, "epoch": 1.842796524550414, "percentage": 61.49, "elapsed_time": "3:05:23", "remaining_time": "1:56:06"} |
|
{"current_steps": 1150, "total_steps": 1854, "loss": 1.4607, "accuracy": 0.5249999761581421, "learning_rate": 1.5777903443007586e-06, "epoch": 1.858961406344716, "percentage": 62.03, "elapsed_time": "3:06:55", "remaining_time": "1:54:25"} |
|
{"current_steps": 1160, "total_steps": 1854, "loss": 1.4675, "accuracy": 0.48124998807907104, "learning_rate": 1.5385477376547226e-06, "epoch": 1.8751262881390178, "percentage": 62.57, "elapsed_time": "3:08:31", "remaining_time": "1:52:47"} |
|
{"current_steps": 1170, "total_steps": 1854, "loss": 1.5265, "accuracy": 0.550000011920929, "learning_rate": 1.4995812170625845e-06, "epoch": 1.89129116993332, "percentage": 63.11, "elapsed_time": "3:10:07", "remaining_time": "1:51:09"} |
|
{"current_steps": 1180, "total_steps": 1854, "loss": 1.4336, "accuracy": 0.5687500238418579, "learning_rate": 1.4609019719648666e-06, "epoch": 1.9074560517276218, "percentage": 63.65, "elapsed_time": "3:11:44", "remaining_time": "1:49:31"} |
|
{"current_steps": 1190, "total_steps": 1854, "loss": 1.3031, "accuracy": 0.46875, "learning_rate": 1.42252110930943e-06, "epoch": 1.9236209335219236, "percentage": 64.19, "elapsed_time": "3:13:11", "remaining_time": "1:47:48"} |
|
{"current_steps": 1200, "total_steps": 1854, "loss": 1.5547, "accuracy": 0.46875, "learning_rate": 1.3844496503620493e-06, "epoch": 1.9397858153162255, "percentage": 64.72, "elapsed_time": "3:14:51", "remaining_time": "1:46:11"} |
|
{"current_steps": 1210, "total_steps": 1854, "loss": 1.4848, "accuracy": 0.5249999761581421, "learning_rate": 1.3466985275416081e-06, "epoch": 1.9559506971105274, "percentage": 65.26, "elapsed_time": "3:16:28", "remaining_time": "1:44:34"} |
|
{"current_steps": 1220, "total_steps": 1854, "loss": 1.3258, "accuracy": 0.5562499761581421, "learning_rate": 1.309278581280791e-06, "epoch": 1.9721155789048292, "percentage": 65.8, "elapsed_time": "3:17:59", "remaining_time": "1:42:53"} |
|
{"current_steps": 1230, "total_steps": 1854, "loss": 1.3633, "accuracy": 0.4937500059604645, "learning_rate": 1.272200556913199e-06, "epoch": 1.9882804606991311, "percentage": 66.34, "elapsed_time": "3:19:35", "remaining_time": "1:41:15"} |
|
{"current_steps": 1240, "total_steps": 1854, "loss": 1.3403, "accuracy": 0.5249999761581421, "learning_rate": 1.2354751015877698e-06, "epoch": 2.004445342493433, "percentage": 66.88, "elapsed_time": "3:21:05", "remaining_time": "1:39:34"} |
|
{"current_steps": 1250, "total_steps": 1854, "loss": 1.4475, "accuracy": 0.518750011920929, "learning_rate": 1.1991127612113945e-06, "epoch": 2.020610224287735, "percentage": 67.42, "elapsed_time": "3:22:40", "remaining_time": "1:37:55"} |
|
{"current_steps": 1260, "total_steps": 1854, "loss": 1.4251, "accuracy": 0.4375, "learning_rate": 1.1631239774206035e-06, "epoch": 2.036775106082037, "percentage": 67.96, "elapsed_time": "3:24:10", "remaining_time": "1:36:15"} |
|
{"current_steps": 1270, "total_steps": 1854, "loss": 1.4389, "accuracy": 0.5375000238418579, "learning_rate": 1.1275190845831978e-06, "epoch": 2.052939987876339, "percentage": 68.5, "elapsed_time": "3:25:50", "remaining_time": "1:34:39"} |
|
{"current_steps": 1280, "total_steps": 1854, "loss": 1.3601, "accuracy": 0.5249999761581421, "learning_rate": 1.0923083068306778e-06, "epoch": 2.0691048696706407, "percentage": 69.04, "elapsed_time": "3:27:28", "remaining_time": "1:33:02"} |
|
{"current_steps": 1290, "total_steps": 1854, "loss": 1.3224, "accuracy": 0.518750011920929, "learning_rate": 1.0575017551223348e-06, "epoch": 2.0852697514649425, "percentage": 69.58, "elapsed_time": "3:28:56", "remaining_time": "1:31:20"} |
|
{"current_steps": 1300, "total_steps": 1854, "loss": 1.4394, "accuracy": 0.5249999761581421, "learning_rate": 1.023109424341833e-06, "epoch": 2.1014346332592444, "percentage": 70.12, "elapsed_time": "3:30:31", "remaining_time": "1:29:43"} |
|
{"current_steps": 1310, "total_steps": 1854, "loss": 1.4007, "accuracy": 0.5375000238418579, "learning_rate": 9.891411904271273e-07, "epoch": 2.1175995150535463, "percentage": 70.66, "elapsed_time": "3:32:06", "remaining_time": "1:28:05"} |
|
{"current_steps": 1320, "total_steps": 1854, "loss": 1.3327, "accuracy": 0.512499988079071, "learning_rate": 9.556068075345363e-07, "epoch": 2.133764396847848, "percentage": 71.2, "elapsed_time": "3:33:39", "remaining_time": "1:26:26"} |
|
{"current_steps": 1330, "total_steps": 1854, "loss": 1.4395, "accuracy": 0.48750001192092896, "learning_rate": 9.225159052377838e-07, "epoch": 2.14992927864215, "percentage": 71.74, "elapsed_time": "3:35:16", "remaining_time": "1:24:48"} |
|
{"current_steps": 1340, "total_steps": 1854, "loss": 1.3488, "accuracy": 0.4937500059604645, "learning_rate": 8.898779857628184e-07, "epoch": 2.166094160436452, "percentage": 72.28, "elapsed_time": "3:36:50", "remaining_time": "1:23:10"} |
|
{"current_steps": 1350, "total_steps": 1854, "loss": 1.4081, "accuracy": 0.512499988079071, "learning_rate": 8.577024212591975e-07, "epoch": 2.1822590422307537, "percentage": 72.82, "elapsed_time": "3:38:24", "remaining_time": "1:21:32"} |
|
{"current_steps": 1360, "total_steps": 1854, "loss": 1.3863, "accuracy": 0.4937500059604645, "learning_rate": 8.259984511088276e-07, "epoch": 2.1984239240250556, "percentage": 73.35, "elapsed_time": "3:39:58", "remaining_time": "1:19:54"} |
|
{"current_steps": 1370, "total_steps": 1854, "loss": 1.3901, "accuracy": 0.5249999761581421, "learning_rate": 7.947751792728237e-07, "epoch": 2.2145888058193575, "percentage": 73.89, "elapsed_time": "3:41:29", "remaining_time": "1:18:15"} |
|
{"current_steps": 1380, "total_steps": 1854, "loss": 1.4331, "accuracy": 0.5062500238418579, "learning_rate": 7.640415716772626e-07, "epoch": 2.2307536876136593, "percentage": 74.43, "elapsed_time": "3:43:11", "remaining_time": "1:16:39"} |
|
{"current_steps": 1390, "total_steps": 1854, "loss": 1.435, "accuracy": 0.5687500238418579, "learning_rate": 7.338064536385722e-07, "epoch": 2.246918569407961, "percentage": 74.97, "elapsed_time": "3:44:48", "remaining_time": "1:15:02"} |
|
{"current_steps": 1400, "total_steps": 1854, "loss": 1.5027, "accuracy": 0.4749999940395355, "learning_rate": 7.040785073292883e-07, "epoch": 2.263083451202263, "percentage": 75.51, "elapsed_time": "3:46:31", "remaining_time": "1:13:27"} |
|
{"current_steps": 1410, "total_steps": 1854, "loss": 1.4184, "accuracy": 0.4625000059604645, "learning_rate": 6.748662692849297e-07, "epoch": 2.279248332996565, "percentage": 76.05, "elapsed_time": "3:49:48", "remaining_time": "1:12:22"} |
|
{"current_steps": 1420, "total_steps": 1854, "loss": 1.3673, "accuracy": 0.48124998807907104, "learning_rate": 6.46178127952686e-07, "epoch": 2.295413214790867, "percentage": 76.59, "elapsed_time": "3:52:49", "remaining_time": "1:11:09"} |
|
{"current_steps": 1430, "total_steps": 1854, "loss": 1.362, "accuracy": 0.46875, "learning_rate": 6.180223212826289e-07, "epoch": 2.3115780965851687, "percentage": 77.13, "elapsed_time": "3:55:47", "remaining_time": "1:09:54"} |
|
{"current_steps": 1440, "total_steps": 1854, "loss": 1.3706, "accuracy": 0.5375000238418579, "learning_rate": 5.904069343621443e-07, "epoch": 2.3277429783794705, "percentage": 77.67, "elapsed_time": "3:58:54", "remaining_time": "1:08:41"} |
|
{"current_steps": 1450, "total_steps": 1854, "loss": 1.3675, "accuracy": 0.4749999940395355, "learning_rate": 5.633398970942544e-07, "epoch": 2.3439078601737724, "percentage": 78.21, "elapsed_time": "4:01:50", "remaining_time": "1:07:22"} |
|
{"current_steps": 1460, "total_steps": 1854, "loss": 1.3139, "accuracy": 0.518750011920929, "learning_rate": 5.368289819205069e-07, "epoch": 2.3600727419680743, "percentage": 78.75, "elapsed_time": "4:04:36", "remaining_time": "1:06:00"} |
|
{"current_steps": 1470, "total_steps": 1854, "loss": 1.4311, "accuracy": 0.44999998807907104, "learning_rate": 5.108818015890785e-07, "epoch": 2.376237623762376, "percentage": 79.29, "elapsed_time": "4:07:38", "remaining_time": "1:04:41"} |
|
{"current_steps": 1480, "total_steps": 1854, "loss": 1.3974, "accuracy": 0.512499988079071, "learning_rate": 4.855058069687291e-07, "epoch": 2.392402505556678, "percentage": 79.83, "elapsed_time": "4:10:24", "remaining_time": "1:03:16"} |
|
{"current_steps": 1490, "total_steps": 1854, "loss": 1.5016, "accuracy": 0.4749999940395355, "learning_rate": 4.607082849092523e-07, "epoch": 2.40856738735098, "percentage": 80.37, "elapsed_time": "4:13:34", "remaining_time": "1:01:56"} |
|
{"current_steps": 1500, "total_steps": 1854, "loss": 1.446, "accuracy": 0.44999998807907104, "learning_rate": 4.3649635614901405e-07, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:16:33", "remaining_time": "1:00:32"} |
|
{"current_steps": 1500, "total_steps": 1854, "eval_loss": 1.4484930038452148, "epoch": 2.4247322691452817, "percentage": 80.91, "elapsed_time": "4:23:10", "remaining_time": "1:02:06"} |
|
|