checkRaiseOnCloud commited on
Commit
9416eeb
·
1 Parent(s): 01e1ce4

First lunar model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 270.78 +/- 21.22
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f8380a430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f8380a4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f8380a550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f8380a5e0>", "_build": "<function ActorCriticPolicy._build at 0x7f6f8380a670>", "forward": "<function ActorCriticPolicy.forward at 0x7f6f8380a700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6f8380a790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f8380a820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6f8380a8b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f8380a940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f8380a9d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f8380aa60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6f83807f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681281986896485077, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3A3j1IiZ260nmstsBRqbGZWwm7MybHNQAAAAAAAIA/xt5svlG9GL2U7B68Wlrguu1MhT7YMos7AACAPwAAgD8znvi9PcEIu36lVLxLpE66hHkWPG5hLzsAAIA/AACAP2BdTb6Safs8HoU2PJwByLqAx4u+3l7qOwAAAAAAAAAA+ho0PtK5lTxKmJC80fxsPDWsPT72Bpy9AACAPwAAgD9mV18+p0ETvbCCML2lhO88FpGEvjGBrz0AAIA/AACAPxr+Br6KyQg8sh8svew7zb07sMm8/YzhOgAAAAAAAAAAAO9KPvSf1bwx0SY888WjvPf0Qb4oE3y9AAAAAAAAgD9GfFC+HMp1vLZ1gzsOhaA5ozvePfBSfroAAIA/AACAP5rxujsR/bg/lV5YPVl3nLy0kXK8v9QmvQAAAAAAAAAAej8YvvFiETwJnMc9l3tAvPXRo73X9jQ9AACAPwAAgD8GyRy+HXEpPqf4LD7NZCe+bDyYPBstKD0AAAAAAAAAADB+hD4UWKa84atHOg5SkrgUwxS+1lF3uQAAgD8AAIA/k4FRPns0zLzF0gI7899qubxzML4y00e6AACAPwAAgD+wAlq+ngaFPUIauj2UGza+WwN+u628qrsAAAAAAAAAACBzbj4HJwe9zdxLOmVe8LivoHC+aiSHuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIct7/xwl4cECUhpRSlIwBbJRL44wBdJRHQJgxlZwGW2R1fZQoaAZoCWgPQwg5mbhVUM9xQJSGlFKUaBVL4mgWR0CYMeFXq7iAdX2UKGgGaAloD0MIzZAqihf9cECUhpRSlGgVS/FoFkdAmDIbOqvNeXV9lChoBmgJaA9DCEfKFkm7mSdAlIaUUpRoFUvJaBZHQJgyj8UEgW91fZQoaAZoCWgPQwi9/iQ+txBwQJSGlFKUaBVL0WgWR0CYM/kyDZlGdX2UKGgGaAloD0MIz4O7s/babkCUhpRSlGgVS89oFkdAmDQHRgJC0HV9lChoBmgJaA9DCBb4im49XnBAlIaUUpRoFU0zAWgWR0CYNGlOXVsldX2UKGgGaAloD0MI8BZIUHwocECUhpRSlGgVS+loFkdAmDS12A5Jb3V9lChoBmgJaA9DCHkEN1I2eXNAlIaUUpRoFUvaaBZHQJg1A5xR2r51fZQoaAZoCWgPQwjvHTUmBFFwQJSGlFKUaBVL4WgWR0CYNT+MIeHSdX2UKGgGaAloD0MIw4AlV7HDYUCUhpRSlGgVTegDaBZHQJg2mmsNlRR1fZQoaAZoCWgPQwjpuvCD83FxQJSGlFKUaBVNBQFoFkdAmDdbVrhzeXV9lChoBmgJaA9DCKW+LO2UEHBAlIaUUpRoFUvIaBZHQJg32MaS9uh1fZQoaAZoCWgPQwjhQEgWcL5wQJSGlFKUaBVL12gWR0CYN/K8+RozdX2UKGgGaAloD0MIkzXqIRqsbkCUhpRSlGgVS9loFkdAmDgJvP1L8XV9lChoBmgJaA9DCNAKDFkdMnBAlIaUUpRoFUvIaBZHQJg4hQ3xWkt1fZQoaAZoCWgPQwgxJv29lMtuQJSGlFKUaBVL7GgWR0CYOQxZuAI6dX2UKGgGaAloD0MIdm7ajBOQc0CUhpRSlGgVS9FoFkdAmDoGukk8inV9lChoBmgJaA9DCATnjCht/nBAlIaUUpRoFUvLaBZHQJg6gdlum791fZQoaAZoCWgPQwjbaWtEsFJkQJSGlFKUaBVN6ANoFkdAmDqm1lXii3V9lChoBmgJaA9DCFmnyvcMtW5AlIaUUpRoFUvNaBZHQJg7F5iVjZt1fZQoaAZoCWgPQwj1MLQ6eYVyQJSGlFKUaBVL2WgWR0CYOzDHwPRRdX2UKGgGaAloD0MIFOy/zk1dTECUhpRSlGgVS8BoFkdAmDv4valDW3V9lChoBmgJaA9DCAAeUaE6zG1AlIaUUpRoFUvMaBZHQJg9FGgBcRl1fZQoaAZoCWgPQwiJQsu6v6JwQJSGlFKUaBVLwmgWR0CYPWiMo+fRdX2UKGgGaAloD0MIB7R0BdtYc0CUhpRSlGgVS9FoFkdAmD2+iN83M3V9lChoBmgJaA9DCMOedvjreG1AlIaUUpRoFUvSaBZHQJg+gx+KCQN1fZQoaAZoCWgPQwjT3XU25IJxQJSGlFKUaBVL5mgWR0CYPpw84giedX2UKGgGaAloD0MIODKP/MH6cECUhpRSlGgVS8VoFkdAmD65y6tknXV9lChoBmgJaA9DCCB9k6bBmW9AlIaUUpRoFUu+aBZHQJhAxSjxkNF1fZQoaAZoCWgPQwj4UKIlj2FxQJSGlFKUaBVNAgFoFkdAmEJeJDVpbnV9lChoBmgJaA9DCEoMAisHqG1AlIaUUpRoFUvPaBZHQJhCcBMi8nN1fZQoaAZoCWgPQwiuLTwvlU9xQJSGlFKUaBVLwWgWR0CYQ7FOO802dX2UKGgGaAloD0MIy74rgn+UcECUhpRSlGgVS+ZoFkdAmES24NI9T3V9lChoBmgJaA9DCC43GOpwEXBAlIaUUpRoFUvJaBZHQJhFmyu6mO51fZQoaAZoCWgPQwgo02hyMUZvQJSGlFKUaBVLzmgWR0CYRaXOW0JGdX2UKGgGaAloD0MIpOGUublOcUCUhpRSlGgVTXEBaBZHQJhF1awD/2l1fZQoaAZoCWgPQwiMn8a9uZ5wQJSGlFKUaBVL72gWR0CYRqbQTmGNdX2UKGgGaAloD0MI/89hvjzGYkCUhpRSlGgVTegDaBZHQJhHas0YTCd1fZQoaAZoCWgPQwjBUl3Ay51uQJSGlFKUaBVL0GgWR0CYSAL4etCBdX2UKGgGaAloD0MI8lt0shS2cUCUhpRSlGgVTT0BaBZHQJhIg9t/Fzd1fZQoaAZoCWgPQwinWguzUKZxQJSGlFKUaBVL0mgWR0CYSlluWKMvdX2UKGgGaAloD0MI+BkXDsQoc0CUhpRSlGgVS9BoFkdAmEwDtkWhy3V9lChoBmgJaA9DCGEW2jlNy2BAlIaUUpRoFU3oA2gWR0CYTVeqaPS2dX2UKGgGaAloD0MIHH3MBwR0cUCUhpRSlGgVS9doFkdAmE2s7p3X7XV9lChoBmgJaA9DCDoeM1DZlnFAlIaUUpRoFUvLaBZHQJhOSS5iExt1fZQoaAZoCWgPQwjThsPSwJtwQJSGlFKUaBVL3GgWR0CYTx7cfvF4dX2UKGgGaAloD0MIio7k8h9ra0CUhpRSlGgVTVYBaBZHQJhQ9ZyMkyF1fZQoaAZoCWgPQwjDRIMUPCJxQJSGlFKUaBVLy2gWR0CYUQQgcLjQdX2UKGgGaAloD0MIiNUfYRjsRUCUhpRSlGgVS8JoFkdAmFIfiYLLIXV9lChoBmgJaA9DCEBrfvylAW5AlIaUUpRoFUvTaBZHQJhSb+wTufF1fZQoaAZoCWgPQwh+chQgClYUQJSGlFKUaBVLqGgWR0CYUrzYmLLqdX2UKGgGaAloD0MIz/kpjoNkbUCUhpRSlGgVTSMBaBZHQJhUcyad+Xt1fZQoaAZoCWgPQwjDt7BuPFdtQJSGlFKUaBVL2GgWR0CYVy9wFTvRdX2UKGgGaAloD0MIMSb9vVQKcECUhpRSlGgVS8doFkdAmFeuP/7zkXV9lChoBmgJaA9DCLmJWprb0HFAlIaUUpRoFUvRaBZHQJhYoWsRxtJ1fZQoaAZoCWgPQwjScwtdiXNkQJSGlFKUaBVN6ANoFkdAmFpZiuuA7XV9lChoBmgJaA9DCCO9qN0vemBAlIaUUpRoFU3oA2gWR0CYWwRR/EwWdX2UKGgGaAloD0MI+5C3XP1ccECUhpRSlGgVS/toFkdAmFu1WwNb1XV9lChoBmgJaA9DCAivXdrw9GtAlIaUUpRoFUvoaBZHQJhc9hDw6Qx1fZQoaAZoCWgPQwg91/fh4CxyQJSGlFKUaBVL6GgWR0CYXP+X7cfvdX2UKGgGaAloD0MIjgbwFkjAcUCUhpRSlGgVS91oFkdAmF2NZFG5MHV9lChoBmgJaA9DCJ/L1CT4v21AlIaUUpRoFU0gAWgWR0CYXbAskIHDdX2UKGgGaAloD0MIsaTcfY76cECUhpRSlGgVS+poFkdAmF3GJvYOD3V9lChoBmgJaA9DCD6Skh5GkHBAlIaUUpRoFUviaBZHQJhezI0ZWJd1fZQoaAZoCWgPQwgIPgYrzmlxQJSGlFKUaBVNFQFoFkdAmF9WK/EfknV9lChoBmgJaA9DCJbpl4h3vXFAlIaUUpRoFUvMaBZHQJhgbC4z7/J1fZQoaAZoCWgPQwg1071OaqVxQJSGlFKUaBVLxWgWR0CYYZjAzpHJdX2UKGgGaAloD0MIym5m9COkcECUhpRSlGgVS9poFkdAmGHpftx+8XV9lChoBmgJaA9DCCeloNvLOmNAlIaUUpRoFU3oA2gWR0CYYlNmlImPdX2UKGgGaAloD0MIwRvSqEAecECUhpRSlGgVS9ZoFkdAmGKddeIEbHV9lChoBmgJaA9DCEesxacAoGBAlIaUUpRoFU3oA2gWR0CYYvQrtmcwdX2UKGgGaAloD0MImMCtu3lNbkCUhpRSlGgVTS8BaBZHQJhjH433pOh1fZQoaAZoCWgPQwjDtkWZjT1xQJSGlFKUaBVLxmgWR0CYYycn3L3cdX2UKGgGaAloD0MIwr0yb1Xnc0CUhpRSlGgVS8ZoFkdAmGMt4eLeh3V9lChoBmgJaA9DCL73N2gvDW9AlIaUUpRoFUvKaBZHQJhjq0VrRBx1fZQoaAZoCWgPQwhmLQWk/blwQJSGlFKUaBVNAQFoFkdAmGVbGFSKnHV9lChoBmgJaA9DCMr9DkUByW9AlIaUUpRoFU0RAWgWR0CYZbuRcNYsdX2UKGgGaAloD0MIl4xjJHvKcECUhpRSlGgVS9poFkdAmGXPtUn5SHV9lChoBmgJaA9DCNi2KLPBtG5AlIaUUpRoFU0LAWgWR0CYZpPczqKQdX2UKGgGaAloD0MIFtukojGFcECUhpRSlGgVS9xoFkdAmGbGwqy4WnV9lChoBmgJaA9DCIQQkC8hN3FAlIaUUpRoFU1cA2gWR0CYZ/XJo0yhdX2UKGgGaAloD0MIRYKpZtZCb0CUhpRSlGgVS85oFkdAmGiDs2NvO3V9lChoBmgJaA9DCLt/LETHwXBAlIaUUpRoFUv4aBZHQJhojKMefZp1fZQoaAZoCWgPQwhcy2Q4nrJwQJSGlFKUaBVLy2gWR0CYaJ0OmR/3dX2UKGgGaAloD0MIle6us2GHcUCUhpRSlGgVS8xoFkdAmGirMLWqcXV9lChoBmgJaA9DCOtVZHTAFXBAlIaUUpRoFUvPaBZHQJhoxbC79Q51fZQoaAZoCWgPQwjOABdkC15zQJSGlFKUaBVL9GgWR0CYaTBVuJk5dX2UKGgGaAloD0MIaOkKthG0ckCUhpRSlGgVS8poFkdAmGx9SQ5my3V9lChoBmgJaA9DCA6hSs3e8XBAlIaUUpRoFUv9aBZHQJhtJygf2bp1fZQoaAZoCWgPQwgqyM9GLu1uQJSGlFKUaBVNAwFoFkdAmG76EnLJS3V9lChoBmgJaA9DCCmYMQXrJG5AlIaUUpRoFU28AWgWR0CYb02wV0tAdX2UKGgGaAloD0MIuJGyRdK+bUCUhpRSlGgVTYoBaBZHQJhvrL8rI5p1fZQoaAZoCWgPQwioGr0aYAVxQJSGlFKUaBVL1WgWR0CYb+EuxrzodX2UKGgGaAloD0MIh01k5gLPcECUhpRSlGgVS95oFkdAmG/5osZpBXV9lChoBmgJaA9DCIJy277H6m5AlIaUUpRoFUvhaBZHQJhwIYqG1x91fZQoaAZoCWgPQwhozCTqRYNwQJSGlFKUaBVL/mgWR0CYcEamoBJadX2UKGgGaAloD0MI02hyMQYiQECUhpRSlGgVS+FoFkdAmHDJ2+wkgXV9lChoBmgJaA9DCKFq9GpA/HBAlIaUUpRoFU0lAWgWR0CYchJbdJrddX2UKGgGaAloD0MIKA01CskEcECUhpRSlGgVS8doFkdAmHXsasIVunVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
lunar_model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:adccbf0eff9bd0c5a8e17fb636b3074fdc234a4bf5a558daac7a526956fe17af
3
+ size 147298
lunar_model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
lunar_model/data ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f8380a430>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f8380a4c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f8380a550>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f8380a5e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6f8380a670>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6f8380a700>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6f8380a790>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f8380a820>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6f8380a8b0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f8380a940>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f8380a9d0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f8380aa60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f6f83807f80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1681281986896485077,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "lr_schedule": {
33
+ ":type:": "<class 'function'>",
34
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
35
+ },
36
+ "_last_obs": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3A3j1IiZ260nmstsBRqbGZWwm7MybHNQAAAAAAAIA/xt5svlG9GL2U7B68Wlrguu1MhT7YMos7AACAPwAAgD8znvi9PcEIu36lVLxLpE66hHkWPG5hLzsAAIA/AACAP2BdTb6Safs8HoU2PJwByLqAx4u+3l7qOwAAAAAAAAAA+ho0PtK5lTxKmJC80fxsPDWsPT72Bpy9AACAPwAAgD9mV18+p0ETvbCCML2lhO88FpGEvjGBrz0AAIA/AACAPxr+Br6KyQg8sh8svew7zb07sMm8/YzhOgAAAAAAAAAAAO9KPvSf1bwx0SY888WjvPf0Qb4oE3y9AAAAAAAAgD9GfFC+HMp1vLZ1gzsOhaA5ozvePfBSfroAAIA/AACAP5rxujsR/bg/lV5YPVl3nLy0kXK8v9QmvQAAAAAAAAAAej8YvvFiETwJnMc9l3tAvPXRo73X9jQ9AACAPwAAgD8GyRy+HXEpPqf4LD7NZCe+bDyYPBstKD0AAAAAAAAAADB+hD4UWKa84atHOg5SkrgUwxS+1lF3uQAAgD8AAIA/k4FRPns0zLzF0gI7899qubxzML4y00e6AACAPwAAgD+wAlq+ngaFPUIauj2UGza+WwN+u628qrsAAAAAAAAAACBzbj4HJwe9zdxLOmVe8LivoHC+aiSHuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_episode_starts": {
41
+ ":type:": "<class 'numpy.ndarray'>",
42
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
43
+ },
44
+ "_last_original_obs": null,
45
+ "_episode_num": 0,
46
+ "use_sde": false,
47
+ "sde_sample_freq": -1,
48
+ "_current_progress_remaining": -0.015808000000000044,
49
+ "_stats_window_size": 100,
50
+ "ep_info_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIct7/xwl4cECUhpRSlIwBbJRL44wBdJRHQJgxlZwGW2R1fZQoaAZoCWgPQwg5mbhVUM9xQJSGlFKUaBVL4mgWR0CYMeFXq7iAdX2UKGgGaAloD0MIzZAqihf9cECUhpRSlGgVS/FoFkdAmDIbOqvNeXV9lChoBmgJaA9DCEfKFkm7mSdAlIaUUpRoFUvJaBZHQJgyj8UEgW91fZQoaAZoCWgPQwi9/iQ+txBwQJSGlFKUaBVL0WgWR0CYM/kyDZlGdX2UKGgGaAloD0MIz4O7s/babkCUhpRSlGgVS89oFkdAmDQHRgJC0HV9lChoBmgJaA9DCBb4im49XnBAlIaUUpRoFU0zAWgWR0CYNGlOXVsldX2UKGgGaAloD0MI8BZIUHwocECUhpRSlGgVS+loFkdAmDS12A5Jb3V9lChoBmgJaA9DCHkEN1I2eXNAlIaUUpRoFUvaaBZHQJg1A5xR2r51fZQoaAZoCWgPQwjvHTUmBFFwQJSGlFKUaBVL4WgWR0CYNT+MIeHSdX2UKGgGaAloD0MIw4AlV7HDYUCUhpRSlGgVTegDaBZHQJg2mmsNlRR1fZQoaAZoCWgPQwjpuvCD83FxQJSGlFKUaBVNBQFoFkdAmDdbVrhzeXV9lChoBmgJaA9DCKW+LO2UEHBAlIaUUpRoFUvIaBZHQJg32MaS9uh1fZQoaAZoCWgPQwjhQEgWcL5wQJSGlFKUaBVL12gWR0CYN/K8+RozdX2UKGgGaAloD0MIkzXqIRqsbkCUhpRSlGgVS9loFkdAmDgJvP1L8XV9lChoBmgJaA9DCNAKDFkdMnBAlIaUUpRoFUvIaBZHQJg4hQ3xWkt1fZQoaAZoCWgPQwgxJv29lMtuQJSGlFKUaBVL7GgWR0CYOQxZuAI6dX2UKGgGaAloD0MIdm7ajBOQc0CUhpRSlGgVS9FoFkdAmDoGukk8inV9lChoBmgJaA9DCATnjCht/nBAlIaUUpRoFUvLaBZHQJg6gdlum791fZQoaAZoCWgPQwjbaWtEsFJkQJSGlFKUaBVN6ANoFkdAmDqm1lXii3V9lChoBmgJaA9DCFmnyvcMtW5AlIaUUpRoFUvNaBZHQJg7F5iVjZt1fZQoaAZoCWgPQwj1MLQ6eYVyQJSGlFKUaBVL2WgWR0CYOzDHwPRRdX2UKGgGaAloD0MIFOy/zk1dTECUhpRSlGgVS8BoFkdAmDv4valDW3V9lChoBmgJaA9DCAAeUaE6zG1AlIaUUpRoFUvMaBZHQJg9FGgBcRl1fZQoaAZoCWgPQwiJQsu6v6JwQJSGlFKUaBVLwmgWR0CYPWiMo+fRdX2UKGgGaAloD0MIB7R0BdtYc0CUhpRSlGgVS9FoFkdAmD2+iN83M3V9lChoBmgJaA9DCMOedvjreG1AlIaUUpRoFUvSaBZHQJg+gx+KCQN1fZQoaAZoCWgPQwjT3XU25IJxQJSGlFKUaBVL5mgWR0CYPpw84giedX2UKGgGaAloD0MIODKP/MH6cECUhpRSlGgVS8VoFkdAmD65y6tknXV9lChoBmgJaA9DCCB9k6bBmW9AlIaUUpRoFUu+aBZHQJhAxSjxkNF1fZQoaAZoCWgPQwj4UKIlj2FxQJSGlFKUaBVNAgFoFkdAmEJeJDVpbnV9lChoBmgJaA9DCEoMAisHqG1AlIaUUpRoFUvPaBZHQJhCcBMi8nN1fZQoaAZoCWgPQwiuLTwvlU9xQJSGlFKUaBVLwWgWR0CYQ7FOO802dX2UKGgGaAloD0MIy74rgn+UcECUhpRSlGgVS+ZoFkdAmES24NI9T3V9lChoBmgJaA9DCC43GOpwEXBAlIaUUpRoFUvJaBZHQJhFmyu6mO51fZQoaAZoCWgPQwgo02hyMUZvQJSGlFKUaBVLzmgWR0CYRaXOW0JGdX2UKGgGaAloD0MIpOGUublOcUCUhpRSlGgVTXEBaBZHQJhF1awD/2l1fZQoaAZoCWgPQwiMn8a9uZ5wQJSGlFKUaBVL72gWR0CYRqbQTmGNdX2UKGgGaAloD0MI/89hvjzGYkCUhpRSlGgVTegDaBZHQJhHas0YTCd1fZQoaAZoCWgPQwjBUl3Ay51uQJSGlFKUaBVL0GgWR0CYSAL4etCBdX2UKGgGaAloD0MI8lt0shS2cUCUhpRSlGgVTT0BaBZHQJhIg9t/Fzd1fZQoaAZoCWgPQwinWguzUKZxQJSGlFKUaBVL0mgWR0CYSlluWKMvdX2UKGgGaAloD0MI+BkXDsQoc0CUhpRSlGgVS9BoFkdAmEwDtkWhy3V9lChoBmgJaA9DCGEW2jlNy2BAlIaUUpRoFU3oA2gWR0CYTVeqaPS2dX2UKGgGaAloD0MIHH3MBwR0cUCUhpRSlGgVS9doFkdAmE2s7p3X7XV9lChoBmgJaA9DCDoeM1DZlnFAlIaUUpRoFUvLaBZHQJhOSS5iExt1fZQoaAZoCWgPQwjThsPSwJtwQJSGlFKUaBVL3GgWR0CYTx7cfvF4dX2UKGgGaAloD0MIio7k8h9ra0CUhpRSlGgVTVYBaBZHQJhQ9ZyMkyF1fZQoaAZoCWgPQwjDRIMUPCJxQJSGlFKUaBVLy2gWR0CYUQQgcLjQdX2UKGgGaAloD0MIiNUfYRjsRUCUhpRSlGgVS8JoFkdAmFIfiYLLIXV9lChoBmgJaA9DCEBrfvylAW5AlIaUUpRoFUvTaBZHQJhSb+wTufF1fZQoaAZoCWgPQwh+chQgClYUQJSGlFKUaBVLqGgWR0CYUrzYmLLqdX2UKGgGaAloD0MIz/kpjoNkbUCUhpRSlGgVTSMBaBZHQJhUcyad+Xt1fZQoaAZoCWgPQwjDt7BuPFdtQJSGlFKUaBVL2GgWR0CYVy9wFTvRdX2UKGgGaAloD0MIMSb9vVQKcECUhpRSlGgVS8doFkdAmFeuP/7zkXV9lChoBmgJaA9DCLmJWprb0HFAlIaUUpRoFUvRaBZHQJhYoWsRxtJ1fZQoaAZoCWgPQwjScwtdiXNkQJSGlFKUaBVN6ANoFkdAmFpZiuuA7XV9lChoBmgJaA9DCCO9qN0vemBAlIaUUpRoFU3oA2gWR0CYWwRR/EwWdX2UKGgGaAloD0MI+5C3XP1ccECUhpRSlGgVS/toFkdAmFu1WwNb1XV9lChoBmgJaA9DCAivXdrw9GtAlIaUUpRoFUvoaBZHQJhc9hDw6Qx1fZQoaAZoCWgPQwg91/fh4CxyQJSGlFKUaBVL6GgWR0CYXP+X7cfvdX2UKGgGaAloD0MIjgbwFkjAcUCUhpRSlGgVS91oFkdAmF2NZFG5MHV9lChoBmgJaA9DCJ/L1CT4v21AlIaUUpRoFU0gAWgWR0CYXbAskIHDdX2UKGgGaAloD0MIsaTcfY76cECUhpRSlGgVS+poFkdAmF3GJvYOD3V9lChoBmgJaA9DCD6Skh5GkHBAlIaUUpRoFUviaBZHQJhezI0ZWJd1fZQoaAZoCWgPQwgIPgYrzmlxQJSGlFKUaBVNFQFoFkdAmF9WK/EfknV9lChoBmgJaA9DCJbpl4h3vXFAlIaUUpRoFUvMaBZHQJhgbC4z7/J1fZQoaAZoCWgPQwg1071OaqVxQJSGlFKUaBVLxWgWR0CYYZjAzpHJdX2UKGgGaAloD0MIym5m9COkcECUhpRSlGgVS9poFkdAmGHpftx+8XV9lChoBmgJaA9DCCeloNvLOmNAlIaUUpRoFU3oA2gWR0CYYlNmlImPdX2UKGgGaAloD0MIwRvSqEAecECUhpRSlGgVS9ZoFkdAmGKddeIEbHV9lChoBmgJaA9DCEesxacAoGBAlIaUUpRoFU3oA2gWR0CYYvQrtmcwdX2UKGgGaAloD0MImMCtu3lNbkCUhpRSlGgVTS8BaBZHQJhjH433pOh1fZQoaAZoCWgPQwjDtkWZjT1xQJSGlFKUaBVLxmgWR0CYYycn3L3cdX2UKGgGaAloD0MIwr0yb1Xnc0CUhpRSlGgVS8ZoFkdAmGMt4eLeh3V9lChoBmgJaA9DCL73N2gvDW9AlIaUUpRoFUvKaBZHQJhjq0VrRBx1fZQoaAZoCWgPQwhmLQWk/blwQJSGlFKUaBVNAQFoFkdAmGVbGFSKnHV9lChoBmgJaA9DCMr9DkUByW9AlIaUUpRoFU0RAWgWR0CYZbuRcNYsdX2UKGgGaAloD0MIl4xjJHvKcECUhpRSlGgVS9poFkdAmGXPtUn5SHV9lChoBmgJaA9DCNi2KLPBtG5AlIaUUpRoFU0LAWgWR0CYZpPczqKQdX2UKGgGaAloD0MIFtukojGFcECUhpRSlGgVS9xoFkdAmGbGwqy4WnV9lChoBmgJaA9DCIQQkC8hN3FAlIaUUpRoFU1cA2gWR0CYZ/XJo0yhdX2UKGgGaAloD0MIRYKpZtZCb0CUhpRSlGgVS85oFkdAmGiDs2NvO3V9lChoBmgJaA9DCLt/LETHwXBAlIaUUpRoFUv4aBZHQJhojKMefZp1fZQoaAZoCWgPQwhcy2Q4nrJwQJSGlFKUaBVLy2gWR0CYaJ0OmR/3dX2UKGgGaAloD0MIle6us2GHcUCUhpRSlGgVS8xoFkdAmGirMLWqcXV9lChoBmgJaA9DCOtVZHTAFXBAlIaUUpRoFUvPaBZHQJhoxbC79Q51fZQoaAZoCWgPQwjOABdkC15zQJSGlFKUaBVL9GgWR0CYaTBVuJk5dX2UKGgGaAloD0MIaOkKthG0ckCUhpRSlGgVS8poFkdAmGx9SQ5my3V9lChoBmgJaA9DCA6hSs3e8XBAlIaUUpRoFUv9aBZHQJhtJygf2bp1fZQoaAZoCWgPQwgqyM9GLu1uQJSGlFKUaBVNAwFoFkdAmG76EnLJS3V9lChoBmgJaA9DCCmYMQXrJG5AlIaUUpRoFU28AWgWR0CYb02wV0tAdX2UKGgGaAloD0MIuJGyRdK+bUCUhpRSlGgVTYoBaBZHQJhvrL8rI5p1fZQoaAZoCWgPQwioGr0aYAVxQJSGlFKUaBVL1WgWR0CYb+EuxrzodX2UKGgGaAloD0MIh01k5gLPcECUhpRSlGgVS95oFkdAmG/5osZpBXV9lChoBmgJaA9DCIJy277H6m5AlIaUUpRoFUvhaBZHQJhwIYqG1x91fZQoaAZoCWgPQwhozCTqRYNwQJSGlFKUaBVL/mgWR0CYcEamoBJadX2UKGgGaAloD0MI02hyMQYiQECUhpRSlGgVS+FoFkdAmHDJ2+wkgXV9lChoBmgJaA9DCKFq9GpA/HBAlIaUUpRoFU0lAWgWR0CYchJbdJrddX2UKGgGaAloD0MIKA01CskEcECUhpRSlGgVS8doFkdAmHXsasIVunVlLg=="
53
+ },
54
+ "ep_success_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
57
+ },
58
+ "_n_updates": 310,
59
+ "observation_space": {
60
+ ":type:": "<class 'gym.spaces.box.Box'>",
61
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
62
+ "dtype": "float32",
63
+ "_shape": [
64
+ 8
65
+ ],
66
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
67
+ "high": "[inf inf inf inf inf inf inf inf]",
68
+ "bounded_below": "[False False False False False False False False]",
69
+ "bounded_above": "[False False False False False False False False]",
70
+ "_np_random": null
71
+ },
72
+ "action_space": {
73
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
74
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
75
+ "n": 4,
76
+ "_shape": [],
77
+ "dtype": "int64",
78
+ "_np_random": null
79
+ },
80
+ "n_envs": 16,
81
+ "n_steps": 2048,
82
+ "gamma": 0.99,
83
+ "gae_lambda": 0.95,
84
+ "ent_coef": 0.0,
85
+ "vf_coef": 0.5,
86
+ "max_grad_norm": 0.5,
87
+ "batch_size": 64,
88
+ "n_epochs": 10,
89
+ "clip_range": {
90
+ ":type:": "<class 'function'>",
91
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
92
+ },
93
+ "clip_range_vf": null,
94
+ "normalize_advantage": true,
95
+ "target_kl": null
96
+ }
lunar_model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d272725d49d41704f18d8ef6d491bc86eda9c85652666389fdcba8b90c207d71
3
+ size 87929
lunar_model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eab2c408c82506d429027af5ed2881bc4936daa1b7b6fe24365d79589ed155d
3
+ size 43329
lunar_model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
lunar_model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (196 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 270.7799623465636, "std_reward": 21.215761169292737, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T07:18:36.277864"}