checkRaiseOnCloud
commited on
Commit
·
9416eeb
1
Parent(s):
01e1ce4
First lunar model
Browse files- README.md +37 -0
- config.json +1 -0
- lunar_model.zip +3 -0
- lunar_model/_stable_baselines3_version +1 -0
- lunar_model/data +96 -0
- lunar_model/policy.optimizer.pth +3 -0
- lunar_model/policy.pth +3 -0
- lunar_model/pytorch_variables.pth +3 -0
- lunar_model/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 270.78 +/- 21.22
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f8380a430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f8380a4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f8380a550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f8380a5e0>", "_build": "<function ActorCriticPolicy._build at 0x7f6f8380a670>", "forward": "<function ActorCriticPolicy.forward at 0x7f6f8380a700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6f8380a790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f8380a820>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6f8380a8b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f8380a940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f8380a9d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f8380aa60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6f83807f80>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681281986896485077, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3A3j1IiZ260nmstsBRqbGZWwm7MybHNQAAAAAAAIA/xt5svlG9GL2U7B68Wlrguu1MhT7YMos7AACAPwAAgD8znvi9PcEIu36lVLxLpE66hHkWPG5hLzsAAIA/AACAP2BdTb6Safs8HoU2PJwByLqAx4u+3l7qOwAAAAAAAAAA+ho0PtK5lTxKmJC80fxsPDWsPT72Bpy9AACAPwAAgD9mV18+p0ETvbCCML2lhO88FpGEvjGBrz0AAIA/AACAPxr+Br6KyQg8sh8svew7zb07sMm8/YzhOgAAAAAAAAAAAO9KPvSf1bwx0SY888WjvPf0Qb4oE3y9AAAAAAAAgD9GfFC+HMp1vLZ1gzsOhaA5ozvePfBSfroAAIA/AACAP5rxujsR/bg/lV5YPVl3nLy0kXK8v9QmvQAAAAAAAAAAej8YvvFiETwJnMc9l3tAvPXRo73X9jQ9AACAPwAAgD8GyRy+HXEpPqf4LD7NZCe+bDyYPBstKD0AAAAAAAAAADB+hD4UWKa84atHOg5SkrgUwxS+1lF3uQAAgD8AAIA/k4FRPns0zLzF0gI7899qubxzML4y00e6AACAPwAAgD+wAlq+ngaFPUIauj2UGza+WwN+u628qrsAAAAAAAAAACBzbj4HJwe9zdxLOmVe8LivoHC+aiSHuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIct7/xwl4cECUhpRSlIwBbJRL44wBdJRHQJgxlZwGW2R1fZQoaAZoCWgPQwg5mbhVUM9xQJSGlFKUaBVL4mgWR0CYMeFXq7iAdX2UKGgGaAloD0MIzZAqihf9cECUhpRSlGgVS/FoFkdAmDIbOqvNeXV9lChoBmgJaA9DCEfKFkm7mSdAlIaUUpRoFUvJaBZHQJgyj8UEgW91fZQoaAZoCWgPQwi9/iQ+txBwQJSGlFKUaBVL0WgWR0CYM/kyDZlGdX2UKGgGaAloD0MIz4O7s/babkCUhpRSlGgVS89oFkdAmDQHRgJC0HV9lChoBmgJaA9DCBb4im49XnBAlIaUUpRoFU0zAWgWR0CYNGlOXVsldX2UKGgGaAloD0MI8BZIUHwocECUhpRSlGgVS+loFkdAmDS12A5Jb3V9lChoBmgJaA9DCHkEN1I2eXNAlIaUUpRoFUvaaBZHQJg1A5xR2r51fZQoaAZoCWgPQwjvHTUmBFFwQJSGlFKUaBVL4WgWR0CYNT+MIeHSdX2UKGgGaAloD0MIw4AlV7HDYUCUhpRSlGgVTegDaBZHQJg2mmsNlRR1fZQoaAZoCWgPQwjpuvCD83FxQJSGlFKUaBVNBQFoFkdAmDdbVrhzeXV9lChoBmgJaA9DCKW+LO2UEHBAlIaUUpRoFUvIaBZHQJg32MaS9uh1fZQoaAZoCWgPQwjhQEgWcL5wQJSGlFKUaBVL12gWR0CYN/K8+RozdX2UKGgGaAloD0MIkzXqIRqsbkCUhpRSlGgVS9loFkdAmDgJvP1L8XV9lChoBmgJaA9DCNAKDFkdMnBAlIaUUpRoFUvIaBZHQJg4hQ3xWkt1fZQoaAZoCWgPQwgxJv29lMtuQJSGlFKUaBVL7GgWR0CYOQxZuAI6dX2UKGgGaAloD0MIdm7ajBOQc0CUhpRSlGgVS9FoFkdAmDoGukk8inV9lChoBmgJaA9DCATnjCht/nBAlIaUUpRoFUvLaBZHQJg6gdlum791fZQoaAZoCWgPQwjbaWtEsFJkQJSGlFKUaBVN6ANoFkdAmDqm1lXii3V9lChoBmgJaA9DCFmnyvcMtW5AlIaUUpRoFUvNaBZHQJg7F5iVjZt1fZQoaAZoCWgPQwj1MLQ6eYVyQJSGlFKUaBVL2WgWR0CYOzDHwPRRdX2UKGgGaAloD0MIFOy/zk1dTECUhpRSlGgVS8BoFkdAmDv4valDW3V9lChoBmgJaA9DCAAeUaE6zG1AlIaUUpRoFUvMaBZHQJg9FGgBcRl1fZQoaAZoCWgPQwiJQsu6v6JwQJSGlFKUaBVLwmgWR0CYPWiMo+fRdX2UKGgGaAloD0MIB7R0BdtYc0CUhpRSlGgVS9FoFkdAmD2+iN83M3V9lChoBmgJaA9DCMOedvjreG1AlIaUUpRoFUvSaBZHQJg+gx+KCQN1fZQoaAZoCWgPQwjT3XU25IJxQJSGlFKUaBVL5mgWR0CYPpw84giedX2UKGgGaAloD0MIODKP/MH6cECUhpRSlGgVS8VoFkdAmD65y6tknXV9lChoBmgJaA9DCCB9k6bBmW9AlIaUUpRoFUu+aBZHQJhAxSjxkNF1fZQoaAZoCWgPQwj4UKIlj2FxQJSGlFKUaBVNAgFoFkdAmEJeJDVpbnV9lChoBmgJaA9DCEoMAisHqG1AlIaUUpRoFUvPaBZHQJhCcBMi8nN1fZQoaAZoCWgPQwiuLTwvlU9xQJSGlFKUaBVLwWgWR0CYQ7FOO802dX2UKGgGaAloD0MIy74rgn+UcECUhpRSlGgVS+ZoFkdAmES24NI9T3V9lChoBmgJaA9DCC43GOpwEXBAlIaUUpRoFUvJaBZHQJhFmyu6mO51fZQoaAZoCWgPQwgo02hyMUZvQJSGlFKUaBVLzmgWR0CYRaXOW0JGdX2UKGgGaAloD0MIpOGUublOcUCUhpRSlGgVTXEBaBZHQJhF1awD/2l1fZQoaAZoCWgPQwiMn8a9uZ5wQJSGlFKUaBVL72gWR0CYRqbQTmGNdX2UKGgGaAloD0MI/89hvjzGYkCUhpRSlGgVTegDaBZHQJhHas0YTCd1fZQoaAZoCWgPQwjBUl3Ay51uQJSGlFKUaBVL0GgWR0CYSAL4etCBdX2UKGgGaAloD0MI8lt0shS2cUCUhpRSlGgVTT0BaBZHQJhIg9t/Fzd1fZQoaAZoCWgPQwinWguzUKZxQJSGlFKUaBVL0mgWR0CYSlluWKMvdX2UKGgGaAloD0MI+BkXDsQoc0CUhpRSlGgVS9BoFkdAmEwDtkWhy3V9lChoBmgJaA9DCGEW2jlNy2BAlIaUUpRoFU3oA2gWR0CYTVeqaPS2dX2UKGgGaAloD0MIHH3MBwR0cUCUhpRSlGgVS9doFkdAmE2s7p3X7XV9lChoBmgJaA9DCDoeM1DZlnFAlIaUUpRoFUvLaBZHQJhOSS5iExt1fZQoaAZoCWgPQwjThsPSwJtwQJSGlFKUaBVL3GgWR0CYTx7cfvF4dX2UKGgGaAloD0MIio7k8h9ra0CUhpRSlGgVTVYBaBZHQJhQ9ZyMkyF1fZQoaAZoCWgPQwjDRIMUPCJxQJSGlFKUaBVLy2gWR0CYUQQgcLjQdX2UKGgGaAloD0MIiNUfYRjsRUCUhpRSlGgVS8JoFkdAmFIfiYLLIXV9lChoBmgJaA9DCEBrfvylAW5AlIaUUpRoFUvTaBZHQJhSb+wTufF1fZQoaAZoCWgPQwh+chQgClYUQJSGlFKUaBVLqGgWR0CYUrzYmLLqdX2UKGgGaAloD0MIz/kpjoNkbUCUhpRSlGgVTSMBaBZHQJhUcyad+Xt1fZQoaAZoCWgPQwjDt7BuPFdtQJSGlFKUaBVL2GgWR0CYVy9wFTvRdX2UKGgGaAloD0MIMSb9vVQKcECUhpRSlGgVS8doFkdAmFeuP/7zkXV9lChoBmgJaA9DCLmJWprb0HFAlIaUUpRoFUvRaBZHQJhYoWsRxtJ1fZQoaAZoCWgPQwjScwtdiXNkQJSGlFKUaBVN6ANoFkdAmFpZiuuA7XV9lChoBmgJaA9DCCO9qN0vemBAlIaUUpRoFU3oA2gWR0CYWwRR/EwWdX2UKGgGaAloD0MI+5C3XP1ccECUhpRSlGgVS/toFkdAmFu1WwNb1XV9lChoBmgJaA9DCAivXdrw9GtAlIaUUpRoFUvoaBZHQJhc9hDw6Qx1fZQoaAZoCWgPQwg91/fh4CxyQJSGlFKUaBVL6GgWR0CYXP+X7cfvdX2UKGgGaAloD0MIjgbwFkjAcUCUhpRSlGgVS91oFkdAmF2NZFG5MHV9lChoBmgJaA9DCJ/L1CT4v21AlIaUUpRoFU0gAWgWR0CYXbAskIHDdX2UKGgGaAloD0MIsaTcfY76cECUhpRSlGgVS+poFkdAmF3GJvYOD3V9lChoBmgJaA9DCD6Skh5GkHBAlIaUUpRoFUviaBZHQJhezI0ZWJd1fZQoaAZoCWgPQwgIPgYrzmlxQJSGlFKUaBVNFQFoFkdAmF9WK/EfknV9lChoBmgJaA9DCJbpl4h3vXFAlIaUUpRoFUvMaBZHQJhgbC4z7/J1fZQoaAZoCWgPQwg1071OaqVxQJSGlFKUaBVLxWgWR0CYYZjAzpHJdX2UKGgGaAloD0MIym5m9COkcECUhpRSlGgVS9poFkdAmGHpftx+8XV9lChoBmgJaA9DCCeloNvLOmNAlIaUUpRoFU3oA2gWR0CYYlNmlImPdX2UKGgGaAloD0MIwRvSqEAecECUhpRSlGgVS9ZoFkdAmGKddeIEbHV9lChoBmgJaA9DCEesxacAoGBAlIaUUpRoFU3oA2gWR0CYYvQrtmcwdX2UKGgGaAloD0MImMCtu3lNbkCUhpRSlGgVTS8BaBZHQJhjH433pOh1fZQoaAZoCWgPQwjDtkWZjT1xQJSGlFKUaBVLxmgWR0CYYycn3L3cdX2UKGgGaAloD0MIwr0yb1Xnc0CUhpRSlGgVS8ZoFkdAmGMt4eLeh3V9lChoBmgJaA9DCL73N2gvDW9AlIaUUpRoFUvKaBZHQJhjq0VrRBx1fZQoaAZoCWgPQwhmLQWk/blwQJSGlFKUaBVNAQFoFkdAmGVbGFSKnHV9lChoBmgJaA9DCMr9DkUByW9AlIaUUpRoFU0RAWgWR0CYZbuRcNYsdX2UKGgGaAloD0MIl4xjJHvKcECUhpRSlGgVS9poFkdAmGXPtUn5SHV9lChoBmgJaA9DCNi2KLPBtG5AlIaUUpRoFU0LAWgWR0CYZpPczqKQdX2UKGgGaAloD0MIFtukojGFcECUhpRSlGgVS9xoFkdAmGbGwqy4WnV9lChoBmgJaA9DCIQQkC8hN3FAlIaUUpRoFU1cA2gWR0CYZ/XJo0yhdX2UKGgGaAloD0MIRYKpZtZCb0CUhpRSlGgVS85oFkdAmGiDs2NvO3V9lChoBmgJaA9DCLt/LETHwXBAlIaUUpRoFUv4aBZHQJhojKMefZp1fZQoaAZoCWgPQwhcy2Q4nrJwQJSGlFKUaBVLy2gWR0CYaJ0OmR/3dX2UKGgGaAloD0MIle6us2GHcUCUhpRSlGgVS8xoFkdAmGirMLWqcXV9lChoBmgJaA9DCOtVZHTAFXBAlIaUUpRoFUvPaBZHQJhoxbC79Q51fZQoaAZoCWgPQwjOABdkC15zQJSGlFKUaBVL9GgWR0CYaTBVuJk5dX2UKGgGaAloD0MIaOkKthG0ckCUhpRSlGgVS8poFkdAmGx9SQ5my3V9lChoBmgJaA9DCA6hSs3e8XBAlIaUUpRoFUv9aBZHQJhtJygf2bp1fZQoaAZoCWgPQwgqyM9GLu1uQJSGlFKUaBVNAwFoFkdAmG76EnLJS3V9lChoBmgJaA9DCCmYMQXrJG5AlIaUUpRoFU28AWgWR0CYb02wV0tAdX2UKGgGaAloD0MIuJGyRdK+bUCUhpRSlGgVTYoBaBZHQJhvrL8rI5p1fZQoaAZoCWgPQwioGr0aYAVxQJSGlFKUaBVL1WgWR0CYb+EuxrzodX2UKGgGaAloD0MIh01k5gLPcECUhpRSlGgVS95oFkdAmG/5osZpBXV9lChoBmgJaA9DCIJy277H6m5AlIaUUpRoFUvhaBZHQJhwIYqG1x91fZQoaAZoCWgPQwhozCTqRYNwQJSGlFKUaBVL/mgWR0CYcEamoBJadX2UKGgGaAloD0MI02hyMQYiQECUhpRSlGgVS+FoFkdAmHDJ2+wkgXV9lChoBmgJaA9DCKFq9GpA/HBAlIaUUpRoFU0lAWgWR0CYchJbdJrddX2UKGgGaAloD0MIKA01CskEcECUhpRSlGgVS8doFkdAmHXsasIVunVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
lunar_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adccbf0eff9bd0c5a8e17fb636b3074fdc234a4bf5a558daac7a526956fe17af
|
3 |
+
size 147298
|
lunar_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
lunar_model/data
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6f8380a430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6f8380a4c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6f8380a550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6f8380a5e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6f8380a670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6f8380a700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6f8380a790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6f8380a820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6f8380a8b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6f8380a940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6f8380a9d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6f8380aa60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f6f83807f80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1681281986896485077,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"lr_schedule": {
|
33 |
+
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
+
},
|
36 |
+
"_last_obs": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3A3j1IiZ260nmstsBRqbGZWwm7MybHNQAAAAAAAIA/xt5svlG9GL2U7B68Wlrguu1MhT7YMos7AACAPwAAgD8znvi9PcEIu36lVLxLpE66hHkWPG5hLzsAAIA/AACAP2BdTb6Safs8HoU2PJwByLqAx4u+3l7qOwAAAAAAAAAA+ho0PtK5lTxKmJC80fxsPDWsPT72Bpy9AACAPwAAgD9mV18+p0ETvbCCML2lhO88FpGEvjGBrz0AAIA/AACAPxr+Br6KyQg8sh8svew7zb07sMm8/YzhOgAAAAAAAAAAAO9KPvSf1bwx0SY888WjvPf0Qb4oE3y9AAAAAAAAgD9GfFC+HMp1vLZ1gzsOhaA5ozvePfBSfroAAIA/AACAP5rxujsR/bg/lV5YPVl3nLy0kXK8v9QmvQAAAAAAAAAAej8YvvFiETwJnMc9l3tAvPXRo73X9jQ9AACAPwAAgD8GyRy+HXEpPqf4LD7NZCe+bDyYPBstKD0AAAAAAAAAADB+hD4UWKa84atHOg5SkrgUwxS+1lF3uQAAgD8AAIA/k4FRPns0zLzF0gI7899qubxzML4y00e6AACAPwAAgD+wAlq+ngaFPUIauj2UGza+WwN+u628qrsAAAAAAAAAACBzbj4HJwe9zdxLOmVe8LivoHC+aiSHuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_episode_starts": {
|
41 |
+
":type:": "<class 'numpy.ndarray'>",
|
42 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
43 |
+
},
|
44 |
+
"_last_original_obs": null,
|
45 |
+
"_episode_num": 0,
|
46 |
+
"use_sde": false,
|
47 |
+
"sde_sample_freq": -1,
|
48 |
+
"_current_progress_remaining": -0.015808000000000044,
|
49 |
+
"_stats_window_size": 100,
|
50 |
+
"ep_info_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVNxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIct7/xwl4cECUhpRSlIwBbJRL44wBdJRHQJgxlZwGW2R1fZQoaAZoCWgPQwg5mbhVUM9xQJSGlFKUaBVL4mgWR0CYMeFXq7iAdX2UKGgGaAloD0MIzZAqihf9cECUhpRSlGgVS/FoFkdAmDIbOqvNeXV9lChoBmgJaA9DCEfKFkm7mSdAlIaUUpRoFUvJaBZHQJgyj8UEgW91fZQoaAZoCWgPQwi9/iQ+txBwQJSGlFKUaBVL0WgWR0CYM/kyDZlGdX2UKGgGaAloD0MIz4O7s/babkCUhpRSlGgVS89oFkdAmDQHRgJC0HV9lChoBmgJaA9DCBb4im49XnBAlIaUUpRoFU0zAWgWR0CYNGlOXVsldX2UKGgGaAloD0MI8BZIUHwocECUhpRSlGgVS+loFkdAmDS12A5Jb3V9lChoBmgJaA9DCHkEN1I2eXNAlIaUUpRoFUvaaBZHQJg1A5xR2r51fZQoaAZoCWgPQwjvHTUmBFFwQJSGlFKUaBVL4WgWR0CYNT+MIeHSdX2UKGgGaAloD0MIw4AlV7HDYUCUhpRSlGgVTegDaBZHQJg2mmsNlRR1fZQoaAZoCWgPQwjpuvCD83FxQJSGlFKUaBVNBQFoFkdAmDdbVrhzeXV9lChoBmgJaA9DCKW+LO2UEHBAlIaUUpRoFUvIaBZHQJg32MaS9uh1fZQoaAZoCWgPQwjhQEgWcL5wQJSGlFKUaBVL12gWR0CYN/K8+RozdX2UKGgGaAloD0MIkzXqIRqsbkCUhpRSlGgVS9loFkdAmDgJvP1L8XV9lChoBmgJaA9DCNAKDFkdMnBAlIaUUpRoFUvIaBZHQJg4hQ3xWkt1fZQoaAZoCWgPQwgxJv29lMtuQJSGlFKUaBVL7GgWR0CYOQxZuAI6dX2UKGgGaAloD0MIdm7ajBOQc0CUhpRSlGgVS9FoFkdAmDoGukk8inV9lChoBmgJaA9DCATnjCht/nBAlIaUUpRoFUvLaBZHQJg6gdlum791fZQoaAZoCWgPQwjbaWtEsFJkQJSGlFKUaBVN6ANoFkdAmDqm1lXii3V9lChoBmgJaA9DCFmnyvcMtW5AlIaUUpRoFUvNaBZHQJg7F5iVjZt1fZQoaAZoCWgPQwj1MLQ6eYVyQJSGlFKUaBVL2WgWR0CYOzDHwPRRdX2UKGgGaAloD0MIFOy/zk1dTECUhpRSlGgVS8BoFkdAmDv4valDW3V9lChoBmgJaA9DCAAeUaE6zG1AlIaUUpRoFUvMaBZHQJg9FGgBcRl1fZQoaAZoCWgPQwiJQsu6v6JwQJSGlFKUaBVLwmgWR0CYPWiMo+fRdX2UKGgGaAloD0MIB7R0BdtYc0CUhpRSlGgVS9FoFkdAmD2+iN83M3V9lChoBmgJaA9DCMOedvjreG1AlIaUUpRoFUvSaBZHQJg+gx+KCQN1fZQoaAZoCWgPQwjT3XU25IJxQJSGlFKUaBVL5mgWR0CYPpw84giedX2UKGgGaAloD0MIODKP/MH6cECUhpRSlGgVS8VoFkdAmD65y6tknXV9lChoBmgJaA9DCCB9k6bBmW9AlIaUUpRoFUu+aBZHQJhAxSjxkNF1fZQoaAZoCWgPQwj4UKIlj2FxQJSGlFKUaBVNAgFoFkdAmEJeJDVpbnV9lChoBmgJaA9DCEoMAisHqG1AlIaUUpRoFUvPaBZHQJhCcBMi8nN1fZQoaAZoCWgPQwiuLTwvlU9xQJSGlFKUaBVLwWgWR0CYQ7FOO802dX2UKGgGaAloD0MIy74rgn+UcECUhpRSlGgVS+ZoFkdAmES24NI9T3V9lChoBmgJaA9DCC43GOpwEXBAlIaUUpRoFUvJaBZHQJhFmyu6mO51fZQoaAZoCWgPQwgo02hyMUZvQJSGlFKUaBVLzmgWR0CYRaXOW0JGdX2UKGgGaAloD0MIpOGUublOcUCUhpRSlGgVTXEBaBZHQJhF1awD/2l1fZQoaAZoCWgPQwiMn8a9uZ5wQJSGlFKUaBVL72gWR0CYRqbQTmGNdX2UKGgGaAloD0MI/89hvjzGYkCUhpRSlGgVTegDaBZHQJhHas0YTCd1fZQoaAZoCWgPQwjBUl3Ay51uQJSGlFKUaBVL0GgWR0CYSAL4etCBdX2UKGgGaAloD0MI8lt0shS2cUCUhpRSlGgVTT0BaBZHQJhIg9t/Fzd1fZQoaAZoCWgPQwinWguzUKZxQJSGlFKUaBVL0mgWR0CYSlluWKMvdX2UKGgGaAloD0MI+BkXDsQoc0CUhpRSlGgVS9BoFkdAmEwDtkWhy3V9lChoBmgJaA9DCGEW2jlNy2BAlIaUUpRoFU3oA2gWR0CYTVeqaPS2dX2UKGgGaAloD0MIHH3MBwR0cUCUhpRSlGgVS9doFkdAmE2s7p3X7XV9lChoBmgJaA9DCDoeM1DZlnFAlIaUUpRoFUvLaBZHQJhOSS5iExt1fZQoaAZoCWgPQwjThsPSwJtwQJSGlFKUaBVL3GgWR0CYTx7cfvF4dX2UKGgGaAloD0MIio7k8h9ra0CUhpRSlGgVTVYBaBZHQJhQ9ZyMkyF1fZQoaAZoCWgPQwjDRIMUPCJxQJSGlFKUaBVLy2gWR0CYUQQgcLjQdX2UKGgGaAloD0MIiNUfYRjsRUCUhpRSlGgVS8JoFkdAmFIfiYLLIXV9lChoBmgJaA9DCEBrfvylAW5AlIaUUpRoFUvTaBZHQJhSb+wTufF1fZQoaAZoCWgPQwh+chQgClYUQJSGlFKUaBVLqGgWR0CYUrzYmLLqdX2UKGgGaAloD0MIz/kpjoNkbUCUhpRSlGgVTSMBaBZHQJhUcyad+Xt1fZQoaAZoCWgPQwjDt7BuPFdtQJSGlFKUaBVL2GgWR0CYVy9wFTvRdX2UKGgGaAloD0MIMSb9vVQKcECUhpRSlGgVS8doFkdAmFeuP/7zkXV9lChoBmgJaA9DCLmJWprb0HFAlIaUUpRoFUvRaBZHQJhYoWsRxtJ1fZQoaAZoCWgPQwjScwtdiXNkQJSGlFKUaBVN6ANoFkdAmFpZiuuA7XV9lChoBmgJaA9DCCO9qN0vemBAlIaUUpRoFU3oA2gWR0CYWwRR/EwWdX2UKGgGaAloD0MI+5C3XP1ccECUhpRSlGgVS/toFkdAmFu1WwNb1XV9lChoBmgJaA9DCAivXdrw9GtAlIaUUpRoFUvoaBZHQJhc9hDw6Qx1fZQoaAZoCWgPQwg91/fh4CxyQJSGlFKUaBVL6GgWR0CYXP+X7cfvdX2UKGgGaAloD0MIjgbwFkjAcUCUhpRSlGgVS91oFkdAmF2NZFG5MHV9lChoBmgJaA9DCJ/L1CT4v21AlIaUUpRoFU0gAWgWR0CYXbAskIHDdX2UKGgGaAloD0MIsaTcfY76cECUhpRSlGgVS+poFkdAmF3GJvYOD3V9lChoBmgJaA9DCD6Skh5GkHBAlIaUUpRoFUviaBZHQJhezI0ZWJd1fZQoaAZoCWgPQwgIPgYrzmlxQJSGlFKUaBVNFQFoFkdAmF9WK/EfknV9lChoBmgJaA9DCJbpl4h3vXFAlIaUUpRoFUvMaBZHQJhgbC4z7/J1fZQoaAZoCWgPQwg1071OaqVxQJSGlFKUaBVLxWgWR0CYYZjAzpHJdX2UKGgGaAloD0MIym5m9COkcECUhpRSlGgVS9poFkdAmGHpftx+8XV9lChoBmgJaA9DCCeloNvLOmNAlIaUUpRoFU3oA2gWR0CYYlNmlImPdX2UKGgGaAloD0MIwRvSqEAecECUhpRSlGgVS9ZoFkdAmGKddeIEbHV9lChoBmgJaA9DCEesxacAoGBAlIaUUpRoFU3oA2gWR0CYYvQrtmcwdX2UKGgGaAloD0MImMCtu3lNbkCUhpRSlGgVTS8BaBZHQJhjH433pOh1fZQoaAZoCWgPQwjDtkWZjT1xQJSGlFKUaBVLxmgWR0CYYycn3L3cdX2UKGgGaAloD0MIwr0yb1Xnc0CUhpRSlGgVS8ZoFkdAmGMt4eLeh3V9lChoBmgJaA9DCL73N2gvDW9AlIaUUpRoFUvKaBZHQJhjq0VrRBx1fZQoaAZoCWgPQwhmLQWk/blwQJSGlFKUaBVNAQFoFkdAmGVbGFSKnHV9lChoBmgJaA9DCMr9DkUByW9AlIaUUpRoFU0RAWgWR0CYZbuRcNYsdX2UKGgGaAloD0MIl4xjJHvKcECUhpRSlGgVS9poFkdAmGXPtUn5SHV9lChoBmgJaA9DCNi2KLPBtG5AlIaUUpRoFU0LAWgWR0CYZpPczqKQdX2UKGgGaAloD0MIFtukojGFcECUhpRSlGgVS9xoFkdAmGbGwqy4WnV9lChoBmgJaA9DCIQQkC8hN3FAlIaUUpRoFU1cA2gWR0CYZ/XJo0yhdX2UKGgGaAloD0MIRYKpZtZCb0CUhpRSlGgVS85oFkdAmGiDs2NvO3V9lChoBmgJaA9DCLt/LETHwXBAlIaUUpRoFUv4aBZHQJhojKMefZp1fZQoaAZoCWgPQwhcy2Q4nrJwQJSGlFKUaBVLy2gWR0CYaJ0OmR/3dX2UKGgGaAloD0MIle6us2GHcUCUhpRSlGgVS8xoFkdAmGirMLWqcXV9lChoBmgJaA9DCOtVZHTAFXBAlIaUUpRoFUvPaBZHQJhoxbC79Q51fZQoaAZoCWgPQwjOABdkC15zQJSGlFKUaBVL9GgWR0CYaTBVuJk5dX2UKGgGaAloD0MIaOkKthG0ckCUhpRSlGgVS8poFkdAmGx9SQ5my3V9lChoBmgJaA9DCA6hSs3e8XBAlIaUUpRoFUv9aBZHQJhtJygf2bp1fZQoaAZoCWgPQwgqyM9GLu1uQJSGlFKUaBVNAwFoFkdAmG76EnLJS3V9lChoBmgJaA9DCCmYMQXrJG5AlIaUUpRoFU28AWgWR0CYb02wV0tAdX2UKGgGaAloD0MIuJGyRdK+bUCUhpRSlGgVTYoBaBZHQJhvrL8rI5p1fZQoaAZoCWgPQwioGr0aYAVxQJSGlFKUaBVL1WgWR0CYb+EuxrzodX2UKGgGaAloD0MIh01k5gLPcECUhpRSlGgVS95oFkdAmG/5osZpBXV9lChoBmgJaA9DCIJy277H6m5AlIaUUpRoFUvhaBZHQJhwIYqG1x91fZQoaAZoCWgPQwhozCTqRYNwQJSGlFKUaBVL/mgWR0CYcEamoBJadX2UKGgGaAloD0MI02hyMQYiQECUhpRSlGgVS+FoFkdAmHDJ2+wkgXV9lChoBmgJaA9DCKFq9GpA/HBAlIaUUpRoFU0lAWgWR0CYchJbdJrddX2UKGgGaAloD0MIKA01CskEcECUhpRSlGgVS8doFkdAmHXsasIVunVlLg=="
|
53 |
+
},
|
54 |
+
"ep_success_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
57 |
+
},
|
58 |
+
"_n_updates": 310,
|
59 |
+
"observation_space": {
|
60 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
61 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
62 |
+
"dtype": "float32",
|
63 |
+
"_shape": [
|
64 |
+
8
|
65 |
+
],
|
66 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
67 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
68 |
+
"bounded_below": "[False False False False False False False False]",
|
69 |
+
"bounded_above": "[False False False False False False False False]",
|
70 |
+
"_np_random": null
|
71 |
+
},
|
72 |
+
"action_space": {
|
73 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
74 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
75 |
+
"n": 4,
|
76 |
+
"_shape": [],
|
77 |
+
"dtype": "int64",
|
78 |
+
"_np_random": null
|
79 |
+
},
|
80 |
+
"n_envs": 16,
|
81 |
+
"n_steps": 2048,
|
82 |
+
"gamma": 0.99,
|
83 |
+
"gae_lambda": 0.95,
|
84 |
+
"ent_coef": 0.0,
|
85 |
+
"vf_coef": 0.5,
|
86 |
+
"max_grad_norm": 0.5,
|
87 |
+
"batch_size": 64,
|
88 |
+
"n_epochs": 10,
|
89 |
+
"clip_range": {
|
90 |
+
":type:": "<class 'function'>",
|
91 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
92 |
+
},
|
93 |
+
"clip_range_vf": null,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"target_kl": null
|
96 |
+
}
|
lunar_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d272725d49d41704f18d8ef6d491bc86eda9c85652666389fdcba8b90c207d71
|
3 |
+
size 87929
|
lunar_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eab2c408c82506d429027af5ed2881bc4936daa1b7b6fe24365d79589ed155d
|
3 |
+
size 43329
|
lunar_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (196 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 270.7799623465636, "std_reward": 21.215761169292737, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T07:18:36.277864"}
|