chineidu commited on
Commit
ecf285b
·
verified ·
1 Parent(s): 4e045c1

Training completed!

Browse files
Files changed (1) hide show
  1. README.md +14 -9
README.md CHANGED
@@ -6,6 +6,7 @@ tags:
6
  datasets:
7
  - conll2012_ontonotesv5
8
  metrics:
 
9
  - f1
10
  model-index:
11
  - name: distilbert-NER-finetuned
@@ -20,9 +21,12 @@ model-index:
20
  split: validation
21
  args: english_v4
22
  metrics:
 
 
 
23
  - name: F1
24
  type: f1
25
- value: 0.47876447876447875
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +36,9 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2012_ontonotesv5 dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.5652
36
- - F1: 0.4788
 
37
 
38
  ## Model description
39
 
@@ -62,16 +67,16 @@ The following hyperparameters were used during training:
62
 
63
  ### Training results
64
 
65
- | Training Loss | Epoch | Step | Validation Loss | F1 |
66
- |:-------------:|:-----:|:----:|:---------------:|:------:|
67
- | 1.0541 | 1.0 | 81 | 0.7248 | 0.3931 |
68
- | 0.6283 | 2.0 | 162 | 0.6020 | 0.4621 |
69
- | 0.5061 | 3.0 | 243 | 0.5652 | 0.4788 |
70
 
71
 
72
  ### Framework versions
73
 
74
  - Transformers 4.42.4
75
  - Pytorch 2.4.0+cu121
76
- - Datasets 2.21.0
77
  - Tokenizers 0.19.1
 
6
  datasets:
7
  - conll2012_ontonotesv5
8
  metrics:
9
+ - accuracy
10
  - f1
11
  model-index:
12
  - name: distilbert-NER-finetuned
 
21
  split: validation
22
  args: english_v4
23
  metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.886927374301676
27
  - name: F1
28
  type: f1
29
+ value: 0.48622047244094485
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
36
 
37
  This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2012_ontonotesv5 dataset.
38
  It achieves the following results on the evaluation set:
39
+ - Loss: 0.4199
40
+ - Accuracy: 0.8869
41
+ - F1: 0.4862
42
 
43
  ## Model description
44
 
 
67
 
68
  ### Training results
69
 
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
+ | 0.7537 | 1.0 | 81 | 0.5239 | 0.8635 | 0.4186 |
73
+ | 0.4601 | 2.0 | 162 | 0.4479 | 0.88 | 0.4790 |
74
+ | 0.3613 | 3.0 | 243 | 0.4199 | 0.8869 | 0.4862 |
75
 
76
 
77
  ### Framework versions
78
 
79
  - Transformers 4.42.4
80
  - Pytorch 2.4.0+cu121
81
+ - Datasets 2.19.2
82
  - Tokenizers 0.19.1