Training completed!
Browse files
README.md
CHANGED
@@ -6,6 +6,7 @@ tags:
|
|
6 |
datasets:
|
7 |
- conll2012_ontonotesv5
|
8 |
metrics:
|
|
|
9 |
- f1
|
10 |
model-index:
|
11 |
- name: distilbert-NER-finetuned
|
@@ -20,9 +21,12 @@ model-index:
|
|
20 |
split: validation
|
21 |
args: english_v4
|
22 |
metrics:
|
|
|
|
|
|
|
23 |
- name: F1
|
24 |
type: f1
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +36,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2012_ontonotesv5 dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
-
|
|
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -62,16 +67,16 @@ The following hyperparameters were used during training:
|
|
62 |
|
63 |
### Training results
|
64 |
|
65 |
-
| Training Loss | Epoch | Step | Validation Loss | F1 |
|
66 |
-
|
67 |
-
|
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
|
71 |
|
72 |
### Framework versions
|
73 |
|
74 |
- Transformers 4.42.4
|
75 |
- Pytorch 2.4.0+cu121
|
76 |
-
- Datasets 2.
|
77 |
- Tokenizers 0.19.1
|
|
|
6 |
datasets:
|
7 |
- conll2012_ontonotesv5
|
8 |
metrics:
|
9 |
+
- accuracy
|
10 |
- f1
|
11 |
model-index:
|
12 |
- name: distilbert-NER-finetuned
|
|
|
21 |
split: validation
|
22 |
args: english_v4
|
23 |
metrics:
|
24 |
+
- name: Accuracy
|
25 |
+
type: accuracy
|
26 |
+
value: 0.886927374301676
|
27 |
- name: F1
|
28 |
type: f1
|
29 |
+
value: 0.48622047244094485
|
30 |
---
|
31 |
|
32 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
36 |
|
37 |
This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on the conll2012_ontonotesv5 dataset.
|
38 |
It achieves the following results on the evaluation set:
|
39 |
+
- Loss: 0.4199
|
40 |
+
- Accuracy: 0.8869
|
41 |
+
- F1: 0.4862
|
42 |
|
43 |
## Model description
|
44 |
|
|
|
67 |
|
68 |
### Training results
|
69 |
|
70 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
71 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
72 |
+
| 0.7537 | 1.0 | 81 | 0.5239 | 0.8635 | 0.4186 |
|
73 |
+
| 0.4601 | 2.0 | 162 | 0.4479 | 0.88 | 0.4790 |
|
74 |
+
| 0.3613 | 3.0 | 243 | 0.4199 | 0.8869 | 0.4862 |
|
75 |
|
76 |
|
77 |
### Framework versions
|
78 |
|
79 |
- Transformers 4.42.4
|
80 |
- Pytorch 2.4.0+cu121
|
81 |
+
- Datasets 2.19.2
|
82 |
- Tokenizers 0.19.1
|