Mariia commited on
Commit
a044545
·
1 Parent(s): 095b2ec

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -1
README.md CHANGED
@@ -26,13 +26,15 @@ widget:
26
  This model derives from participation of SINAI team in [DISease TExt Mining Shared Task (DISTEMIST)](https://temu.bsc.es/distemist/). The DISTEMIST-entities subtrack required automatically finding disease mentions in clinical cases. Taking into account the length of clinical texts in the dataset, we opted for a sentence-level NER approach based on fine-tuning of a [RoBERTa model pre-trained on Spanish biomedical corpora](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-es).
27
 
28
  # Evaluation and results
29
- Using the biomedical model on EHRs can be considered as cross-domain experiment and the fact that our biomedical system exhibits encouraging results on the NER task highlights the existence of domain transfer potential between biomedical and clinical fields. Table below summarizes the official micro-average scores obtained by this model during the official evaluation. Team standings can be consulted [here](http://participants-area.bioasq.org/results/DisTEMIST/).
 
30
 
31
  | Presicion | Recall | F1-score |
32
  |-----------|--------|----------|
33
  | 0.7520 | 0.7259 | 0.7387 |
34
 
35
  # System description paper and citation
 
36
  System description paper will be published in proceedings of 10th BioASQ Workshop, which will be held as a Lab in CLEF 2022 on September 5-8, 2022:
37
 
38
  ```bibtex:
 
26
  This model derives from participation of SINAI team in [DISease TExt Mining Shared Task (DISTEMIST)](https://temu.bsc.es/distemist/). The DISTEMIST-entities subtrack required automatically finding disease mentions in clinical cases. Taking into account the length of clinical texts in the dataset, we opted for a sentence-level NER approach based on fine-tuning of a [RoBERTa model pre-trained on Spanish biomedical corpora](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-es).
27
 
28
  # Evaluation and results
29
+
30
+ Using the biomedical model on EHRs can be considered as cross-domain experiment and the fact that our biomedical system exhibits encouraging results on the NER task highlights the existence of domain transfer potential between biomedical and clinical fields. Table below summarizes the official micro-average scores obtained by this model during the official evaluation. Team standings are available [here](http://participants-area.bioasq.org/results/DisTEMIST/).
31
 
32
  | Presicion | Recall | F1-score |
33
  |-----------|--------|----------|
34
  | 0.7520 | 0.7259 | 0.7387 |
35
 
36
  # System description paper and citation
37
+
38
  System description paper will be published in proceedings of 10th BioASQ Workshop, which will be held as a Lab in CLEF 2022 on September 5-8, 2022:
39
 
40
  ```bibtex: