ppo_lunar_lander / config.json
chriss1245's picture
Upload PPO LunarLander-v2 trained agent
e04ff55
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a81c998f5b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a81c998f640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a81c998f6d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a81c998f760>", "_build": "<function ActorCriticPolicy._build at 0x7a81c998f7f0>", "forward": "<function ActorCriticPolicy.forward at 0x7a81c998f880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a81c998f910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a81c998f9a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a81c998fa30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a81c998fac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a81c998fb50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a81c998fbe0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a81c993e840>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702031491480282617, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0Wo7zRlak/6nTyvSOInr557FK9KxE6vQAAAAAAAAAAmkmjvADUnT/t8GO97XvYvibHH7z1RDY6AAAAAAAAAAB6dEM+MMb4PmFWSr6E2nu+6t26vLXM5L0AAAAAAAAAAHP52T0UDt66gk27vbNDG74k4xK7D0JDvwAAAAAAAIA/AJVrvcUuKj6Rbcs80uZsvms4nTxF6mm9AAAAAAAAAADNZHg8XOcMupg84jqV1HI1KQXWu18sB7oAAIA/AACAP5rHxjxsa5M+suIaOyD+WL5g9w09SFVUPAAAAAAAAAAAbawSvgrlDbugIcs2hkZ8M+hMCDzCUe+1AACAPwAAgD+tCAo+O/2lPgyqrr7RQTC+cWDwvSJL+TwAAAAAAAAAADPdIjxqtpc+UW4UPdRThr5JPIE9VfrqvAAAAAAAAAAAZlQRvcPtPryDCVO6XH1YvmM3ijsqV5A+AACAPwAAgD9mY4w8cUSNP94+Dz2spJy+gs4IPboxlLsAAAAAAAAAAA3hwT1KcwI/EFvAvfNPnb4tGY08ZbOqvQAAAAAAAAAAmpSMPTr0YD+CczA9iePLvjcBtD1NTfS9AAAAAAAAAAAzIy29e2apugc1LTQN15Yue7kSOnaFqLMAAIA/AACAP/MMTT5cs8Q+7Z45vTeehb5ZNLs8WJQNPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQER6i/O+qR6MAWyUTREBjAF0lEdAlWhpYs/Y8XV9lChoBkdAYjhRHf/FSGgHTegDaAhHQJVujq9oN/h1fZQoaAZHQHDH8Ti83/BoB03RA2gIR0CVc5l3Qla9dX2UKGgGR0BkekrqdH2AaAdN6ANoCEdAlXQ1Hz6JqXV9lChoBkdAYsF0rbxmTWgHTegDaAhHQJV2oFUyYXx1fZQoaAZHQGQ4Na6jFhpoB03oA2gIR0CVfqnyup0fdX2UKGgGR0BnHtwgkka/aAdN6ANoCEdAlYBm/8EV33V9lChoBkdAPZXnZCfHxWgHS/NoCEdAlYKA9aEBbXV9lChoBkdAYXRDkU9IPWgHTegDaAhHQJWEUoTfzjF1fZQoaAZHQGSyA/TspodoB03oA2gIR0CViMZ9d/rjdX2UKGgGR0BxIUrWiDdyaAdN6wJoCEdAlY2nJYDDCXV9lChoBkdAYGYyiVSn+GgHTegDaAhHQJWkWUGFBY51fZQoaAZHQGRDnVG0/npoB03oA2gIR0CVpplkYoAodX2UKGgGR0BkzhHkLhJiaAdN6ANoCEdAlaiooRZlnXV9lChoBkdAccEihnJ1aGgHTb0CaAhHQJWo7V2A5Jd1fZQoaAZHQGT/LTx5LRNoB03oA2gIR0CVqjoqTbFkdX2UKGgGR0Blvh4fOlfraAdN6ANoCEdAlaq2UW2w3nV9lChoBkdAZvb3XZoPCmgHTegDaAhHQJWtW8VYZEV1fZQoaAZHQHDTmbkOqedoB03EAWgIR0CVsVAvcrRTdX2UKGgGR0BBm8d5prULaAdNEwFoCEdAlbkD1oQFtHV9lChoBkdAUqT91loUSWgHS+BoCEdAlbm5X+2mYXV9lChoBkdAb/M7ZnL7oGgHTWoDaAhHQJW+ZbLU1AJ1fZQoaAZHQGJZbQTmGM5oB03oA2gIR0CVvqSGrS3LdX2UKGgGR0BnmAEpy6tlaAdN6ANoCEdAlcUY5tFa0XV9lChoBkdAcrUq0tyxRmgHTawCaAhHQJXR5kJ8fFJ1fZQoaAZHQGHw2w/xDstoB03oA2gIR0CV0fsxwhnrdX2UKGgGR0Bjk+TV2A5JaAdN6ANoCEdAldOwK8cuJ3V9lChoBkdAcUYLYPGyX2gHTbgCaAhHQJXU6Zof0Vd1fZQoaAZHQGPCsH8jzI5oB03oA2gIR0CV13ngYP5IdX2UKGgGR0Bey8k2P1cuaAdN6ANoCEdAlduaa1Cw8nV9lChoBkdAZcIymhufmWgHTegDaAhHQJXfJdSl3yJ1fZQoaAZHQGAotPgvUSZoB03oA2gIR0CV838OkLx7dX2UKGgGR0BvE/oNd7fIaAdNNAJoCEdAlfV/N/vv0HV9lChoBkdAZU5LDhtLtmgHTegDaAhHQJX3tnHvMKV1fZQoaAZHQGT64yoGY8doB03oA2gIR0CV+pHfdhy9dX2UKGgGR0BkCdA9mpVCaAdN6ANoCEdAlgQQ6ltTDXV9lChoBkdAcKudTHbRGGgHTR8BaAhHQJYEXu1F6Rh1fZQoaAZHQG3uAuZkTYdoB032AWgIR0CWBQMjNY8udX2UKGgGR0ByPKHO8kD7aAdNNgJoCEdAlgc2FvhqCnV9lChoBkdAclyL5RCQcWgHTY0DaAhHQJYHvMr3Cbd1fZQoaAZHQG0u9l2/zrhoB02jA2gIR0CWCDQ1aW5ZdX2UKGgGR0ByiO31BdD6aAdNoQNoCEdAlgxSlnAZbnV9lChoBkdAcL9SVW0Z32gHTbUCaAhHQJYNO51/2Cd1fZQoaAZHQG1GNRekYXRoB01bAWgIR0CWDWkRzzVddX2UKGgGR0BNXcwpON5uaAdL4mgIR0CWD4JlrdnCdX2UKGgGR0Bwa01UEPlNaAdNAgJoCEdAlhG9N34bj3V9lChoBkdAZA3MvAXVLGgHTegDaAhHQJYT1hc7heh1fZQoaAZHQHIo0waisXBoB00LAmgIR0CWFAl2eQMhdX2UKGgGR0Bw56JUHY6GaAdNKwFoCEdAlhaC6DoQnXV9lChoBkdAcEZ0b961LWgHTSMCaAhHQJYZLbcoH9p1fZQoaAZHQELswY+B6KNoB0vuaAhHQJYeWjJuEVZ1fZQoaAZHQGpaFJpWV/toB03+AWgIR0CWHyLa24NJdX2UKGgGR0BhnoJPZZjhaAdN6ANoCEdAlh+4/NZ/1HV9lChoBkdAcH1akAPuomgHTYIBaAhHQJYgK4H5aeR1fZQoaAZHQF82exwAEMdoB03oA2gIR0CWIhopx3mndX2UKGgGR0Bw18MtsenyaAdNKQJoCEdAliPG65Gz8nV9lChoBkdAYkmAGSpzcWgHTegDaAhHQJYl5aq0dBB1fZQoaAZHQHHdWplz2exoB017AmgIR0CWJ05u63AmdX2UKGgGR0Byp54HHFP0aAdNHAJoCEdAlikQWBSUDHV9lChoBkdAcWjohY/3WWgHTRwDaAhHQJZClj/dZaF1fZQoaAZHQG/uCr92ovVoB00CAmgIR0CWREYRNATqdX2UKGgGR0ByBqvyLAHnaAdNRgFoCEdAlkU5R0lqrXV9lChoBkdAcfnGn4wh4mgHTbwBaAhHQJZF7aufVZt1fZQoaAZHQHCB854nndRoB024AmgIR0CWRmMUAT7EdX2UKGgGR0BwSj0EovzwaAdNjwFoCEdAlkmcWj4593V9lChoBkdAbK1oaDPGAGgHTYIBaAhHQJZLZmDlHSZ1fZQoaAZHQG+9VrAP/aRoB015AWgIR0CWTI8uzyBkdX2UKGgGR0BwhJdVvMr3aAdNxgFoCEdAlkz9CeEqUnV9lChoBkdAcDQDzAeq72gHTbYCaAhHQJZNk5OrQw91fZQoaAZHQHCFdEkSmIloB01iAWgIR0CWTtyc0+C9dX2UKGgGR0BwH53u/k/9aAdNjQFoCEdAlk96iGnGbXV9lChoBkdASRb8aXKKYWgHS9toCEdAlk9+NLlFMXV9lChoBkdAbtac/+sHSmgHTRsDaAhHQJZUUzSCvox1fZQoaAZHQG45lByCFsZoB01lAWgIR0CWVxnGbTc7dX2UKGgGR0BkVOZuyeI3aAdN6ANoCEdAlldvvKEFn3V9lChoBkdARDUHjZL7GmgHS+xoCEdAllhZItlI3HV9lChoBkdAcLMmmce8w2gHTewCaAhHQJZZCElE7XB1fZQoaAZHQHHjGm+CbttoB03nAWgIR0CWWniIcinpdX2UKGgGR0BxJEEOiFj/aAdNQwFoCEdAllui8WbgCXV9lChoBkdAcTrxH5Jsf2gHTSIBaAhHQJZdF1klNUR1fZQoaAZHQHFp7Tx5LRNoB00pAWgIR0CWXXnkT6BRdX2UKGgGR0Br14d4mkWRaAdNggJoCEdAll4UBbOeKHV9lChoBkdAct7gQ6IWQGgHTWMBaAhHQJZfXQ3PzFx1fZQoaAZHQHDuiaRZED1oB02SAWgIR0CWX6pn6EamdX2UKGgGR0BwqCldkauPaAdNSgJoCEdAlmEgCW/rSnV9lChoBkdAcMj0VJtix2gHTdkBaAhHQJZhRvwVj7R1fZQoaAZHQG3GEOqebutoB00XAWgIR0CWYV1e0G/vdX2UKGgGR0Bxn+3CsOoYaAdNOwFoCEdAlmUZEx7AtXV9lChoBkdAcRFyKNyYHGgHTaICaAhHQJZlSMBIWgx1fZQoaAZHQG1A5wOvt+loB01KAWgIR0CWZu1LrX18dX2UKGgGR0BwODS2H+IeaAdNUgFoCEdAlmoW6shgV3V9lChoBkdAcYuW5Yoy9GgHTRYBaAhHQJZq/zqbBoF1fZQoaAZHQG6jcWsRxtJoB03OAmgIR0CWa6lQdjoZdX2UKGgGR0BvUBdUsFt9aAdNkgFoCEdAlmw5YDDCQHV9lChoBkdAQhOPaL4ve2gHTQ0BaAhHQJZsM6gdwNt1fZQoaAZHQG+e/jCHh0hoB00bAWgIR0CWbUUb1h9cdX2UKGgGR0BxL+MAFPi2aAdNfgFoCEdAlm/g9ic5KnV9lChoBkdAcRYPRiPQwGgHTT8BaAhHQJZxct8NQTF1fZQoaAZHQG6R3TEzfrNoB021AWgIR0CWcmjKxLTQdX2UKGgGR0Bwqo5vLowFaAdNWQFoCEdAlnK6ZlWfb3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}