Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,84 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
# Chuxin-1.6B-1M
|
5 |
+
<br>
|
6 |
+
|
7 |
+
## 介绍 (Introduction)
|
8 |
+
|
9 |
+
**Chuxin-1.6B-Base**是太初研发的16亿参数规模的模型。Chuxin-1.6B完全基于开源数据构建,在经过超大规模数据训练后,Chuxin-1.6B在各类下游任务上具有非常的竞争力。
|
10 |
+
**Chuxin-1.6B-1M**是基于Chuxin-1.6B模型在1M窗口下训练后的结果,大海捞针实验显示其具有非常强的上下文检索能力。
|
11 |
+
|
12 |
+
如果您想了解更多关于Chuxin-1.6B开源模型的细节,我们建议您参阅我们的技术报告[Arxiv](https://xxxx)
|
13 |
+
|
14 |
+
**Chuxin-1.6B-Base** is a model with 1.6 billion parameters developed by Taichu. Chuxin-1.6B is built entirely on open-source data. After being trained with large-scale data, Chuxin has very competitive capabilities in various downstream tasks.
|
15 |
+
**Chuxin-1.6B-1M** is the result of training the Chuxin-1.6B model with a 1M windows. Experiments such as searching for a needle in a haystack demonstrate its strong contextual retrieval abilities.
|
16 |
+
|
17 |
+
If you would like to learn more about the Chuxin-1.6B open-source model, we suggest you refer to our technical report on [Arxiv](https://xxxx).
|
18 |
+
<br>
|
19 |
+
|
20 |
+
## 快速使用(Quickstart)
|
21 |
+
|
22 |
+
您可以通过以下代码轻松调用:
|
23 |
+
|
24 |
+
You can easily call the model with the following code:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("Chuxin/Chuxin-1.6B-1M", trust_remote_code=True)
|
30 |
+
model = AutoModelForCausalLM.from_pretrained("Chuxin/Chuxin-1.6B-1M", device_map="auto", trust_remote_code=True, bf16=True).eval()
|
31 |
+
inputs = tokenizer('蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是', return_tensors='pt')
|
32 |
+
inputs = inputs.to(model.device)
|
33 |
+
pred = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
34 |
+
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
|
35 |
+
# 蒙古国的首都是乌兰巴托(Ulaanbaatar)\n冰岛的首都是雷克雅未克(Reykjavik)\n埃塞俄比亚的首都是亚的斯亚贝巴(Addis Ababa)...
|
36 |
+
```
|
37 |
+
|
38 |
+
## 评测效果(Evaluation)
|
39 |
+
|
40 |
+
### (常识推理和阅读理解) Common Sense Reasoning and Reading Comprehension tasks
|
41 |
+
|
42 |
+
| Model | size | ARC-c |ARC-e |Boolq |Copa |Hellaswag |OpenbookQA |Piqa |Sciq |Winogrande |Avg|
|
43 |
+
|:--------------|:----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|
|
44 |
+
| chuxin-1.6B-base | 1.6B | 39.68 | 71.38 | 71.25 | 83 | 66.09 | 35.00 | 77.09 | 95 | 63.54 | 66.89 |
|
45 |
+
| chuxin-1.6B-32k | 1.6B | 39.16 | 70.66 | 67.71 | 81 | 65.69 | 35.8 | 76.88 | 94.2 | 62.51 | 65.96 |
|
46 |
+
| chuxin-1.6B-64k | 1.6B | 38.48 | 70.24 | 67.52 | 82 | 65.6 | 35.2 | 76.61 | 94.3 | 63.3 | 65.92 |
|
47 |
+
| chuxin-1.6B-128k | 1.6B | 39.08 | 69.4 | 67.71 | 80 | 65.74 | 35.4 | 76.39 | 94.1 | 63.3 | 65.68 |
|
48 |
+
| chuxin-1.6B-256k | 1.6B | 40.19 | 70.75 | 69.3 | 78 | 65.85 | 35.8 | 76.88 | 93.5 | 63.85 | 66.01 |
|
49 |
+
| chuxin-1.6B-512k | 1.6B | 39.68 | 71.38 | 71.25 | 83 | 66.09 | 35.00 | 77.09 | 95 | 63.54 | 66.89 |
|
50 |
+
| chuxin-1.6B-1M | 1.6B | 39.68 | 71.38 | 71.25 | 83 | 66.09 | 35.00 | 77.09 | 95 | 63.54 | 66.89 |
|
51 |
+
|
52 |
+
### Open LLM LeaderBoard
|
53 |
+
|
54 |
+
| Model | size | ARC-c |HellaSwag|MMLU |TruthfulQA |Winogrande |GSM-8k |Avg |
|
55 |
+
|:--------------|:----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|:-----------:|
|
56 |
+
| chuxin-1.6B-base | 1.6B | 39.68 | 66.09 | 41.07 | 37.65 | 63.54 | 12.66 | 43.45 |
|
57 |
+
| chuxin-1.6B-32k | 1.6B | 39.16 | 65.69 | 38.63 | 35.66 | 62.51 | 11.6 | 42.21 |
|
58 |
+
| chuxin-1.6B-64k | 1.6B | 38.48 | 65.6 | 38.43 | 35.07 | 63.3 | 11.9 | 42.13|
|
59 |
+
| chuxin-1.6B-128k | 1.6B | 39.08 | 65.74 | 37.65 | 34.89 | 63.3 | 11.07 | 41.96|
|
60 |
+
| chuxin-1.6B-256k | 1.6B | 40.19 | 65.85 | 37.16 | 35.2 | 63.85 | 10.16 | 42.07 |
|
61 |
+
| chuxin-1.6B-512k | 1.6B | 39.68 | 71.38 | 71.25 | 83 | 66.09 | 35.00 | 77.09 | 95 | 63.54 | 66.89 |
|
62 |
+
| Chuxin-1.6B-1M | 1.6B | 41.13 | 72.26 | 71.25 | 83 | 66.09 | 35.00 | 77.09 | 95 | 63.54 | 66.89 |
|
63 |
+
|
64 |
+
### needle in a haystack
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
## 引用 (Citation)
|
71 |
+
|
72 |
+
如果你觉得我们的工作对你有帮助,欢迎引用!
|
73 |
+
|
74 |
+
If you find our work helpful, feel free to give us a cite.
|
75 |
+
|
76 |
+
```
|
77 |
+
@article{chuxin,
|
78 |
+
title={CHUXIN: 1.6B TECHNICAL REPORT},
|
79 |
+
author={Zhuang Xiaomin, Jiang yufan, Qiaozhi He, Zhihua Wu},
|
80 |
+
journal={arXiv preprint arXiv:xxx},
|
81 |
+
year={2024}
|
82 |
+
}
|
83 |
+
```
|
84 |
+
<br>
|