Upload folder using huggingface_hub
Browse files- README.md +119 -0
- config.json +114 -0
- model.safetensors +3 -0
- special_tokens_map.json +3 -0
- tokenization_vulberta.py +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +26 -0
README.md
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
arxiv: 2205.12424
|
4 |
+
datasets:
|
5 |
+
- code_x_glue_cc_defect_detection
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- roc_auc
|
12 |
+
model-index:
|
13 |
+
- name: VulBERTa MLP
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: defect-detection
|
17 |
+
dataset:
|
18 |
+
name: codexglue-devign
|
19 |
+
type: codexglue-devign
|
20 |
+
metrics:
|
21 |
+
- name: Accuracy
|
22 |
+
type: Accuracy
|
23 |
+
value: 64.71
|
24 |
+
- name: Precision
|
25 |
+
type: Precision
|
26 |
+
value: 64.80
|
27 |
+
- name: Recall
|
28 |
+
type: Recall
|
29 |
+
value: 50.76
|
30 |
+
- name: F1
|
31 |
+
type: F1
|
32 |
+
value: 56.93
|
33 |
+
- name: ROC-AUC
|
34 |
+
type: ROC-AUC
|
35 |
+
value: 71.02
|
36 |
+
pipeline_tag: text-classification
|
37 |
+
tags:
|
38 |
+
- devign
|
39 |
+
- defect detection
|
40 |
+
- code
|
41 |
+
---
|
42 |
+
|
43 |
+
# VulBERTa MLP Devign
|
44 |
+
## VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection
|
45 |
+
|
46 |
+
![VulBERTa architecture](https://raw.githubusercontent.com/ICL-ml4csec/VulBERTa/main/VB.png)
|
47 |
+
|
48 |
+
## Overview
|
49 |
+
This model is the unofficial HuggingFace version of "[VulBERTa](https://github.com/ICL-ml4csec/VulBERTa/tree/main)" with an MLP classification head, trained on CodeXGlue Devign (C code), by Hazim Hanif & Sergio Maffeis (Imperial College London). I simplified the tokenization process by adding the cleaning (comment removal) step to the tokenizer and added the simplified tokenizer to this model repo as an AutoClass.
|
50 |
+
|
51 |
+
> This paper presents presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.
|
52 |
+
|
53 |
+
## Usage
|
54 |
+
**You must install libclang for tokenization.**
|
55 |
+
|
56 |
+
```bash
|
57 |
+
pip install libclang
|
58 |
+
```
|
59 |
+
|
60 |
+
Note that due to the custom tokenizer, you must pass `trust_remote_code=True` when instantiating the model.
|
61 |
+
Example:
|
62 |
+
```
|
63 |
+
from transformers import pipeline
|
64 |
+
pipe = pipeline("text-classification", model="claudios/VulBERTa-MLP-Devign", trust_remote_code=True, return_all_scores=True)
|
65 |
+
pipe("static void filter_mirror_setup(NetFilterState *nf, Error **errp)\n{\n MirrorState *s = FILTER_MIRROR(nf);\n Chardev *chr;\n chr = qemu_chr_find(s->outdev);\n if (chr == NULL) {\n error_set(errp, ERROR_CLASS_DEVICE_NOT_FOUND,\n \"Device '%s' not found\", s->outdev);\n qemu_chr_fe_init(&s->chr_out, chr, errp);")
|
66 |
+
>> [[{'label': 'LABEL_0', 'score': 0.014685827307403088},
|
67 |
+
{'label': 'LABEL_1', 'score': 0.985314130783081}]]
|
68 |
+
```
|
69 |
+
|
70 |
+
***
|
71 |
+
|
72 |
+
## Data
|
73 |
+
We provide all data required by VulBERTa.
|
74 |
+
This includes:
|
75 |
+
- Tokenizer training data
|
76 |
+
- Pre-training data
|
77 |
+
- Fine-tuning data
|
78 |
+
|
79 |
+
Please refer to the [data](https://github.com/ICL-ml4csec/VulBERTa/tree/main/data "data") directory for further instructions and details.
|
80 |
+
|
81 |
+
## Models
|
82 |
+
We provide all models pre-trained and fine-tuned by VulBERTa.
|
83 |
+
This includes:
|
84 |
+
- Trained tokenisers
|
85 |
+
- Pre-trained VulBERTa model (core representation knowledge)
|
86 |
+
- Fine-tuned VulBERTa-MLP and VulBERTa-CNN models
|
87 |
+
|
88 |
+
Please refer to the [models](https://github.com/ICL-ml4csec/VulBERTa/tree/main/models "models") directory for further instructions and details.
|
89 |
+
|
90 |
+
## How to use
|
91 |
+
|
92 |
+
In our project, we uses Jupyterlab notebook to run experiments.
|
93 |
+
Therefore, we separate each task into different notebook:
|
94 |
+
|
95 |
+
- [Pretraining_VulBERTa.ipynb](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Pretraining_VulBERTa.ipynb "Pretraining_VulBERTa.ipynb") - Pre-trains the core VulBERTa knowledge representation model using DrapGH dataset.
|
96 |
+
- [Finetuning_VulBERTa-MLP.ipynb](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Finetuning_VulBERTa-MLP.ipynb "Finetuning_VulBERTa-MLP.ipynb") - Fine-tunes the VulBERTa-MLP model on a specific vulnerability detection dataset.
|
97 |
+
- [Evaluation_VulBERTa-MLP.ipynb](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Evaluation_VulBERTa-MLP.ipynb "Evaluation_VulBERTa-MLP.ipynb") - Evaluates the fine-tuned VulBERTa-MLP models on testing set of a specific vulnerability detection dataset.
|
98 |
+
- [Finetuning+evaluation_VulBERTa-CNN](https://github.com/ICL-ml4csec/VulBERTa/blob/main/Finetuning%2Bevaluation_VulBERTa-CNN.ipynb "Finetuning+evaluation_VulBERTa-CNN.ipynb") - Fine-tunes VulBERTa-CNN models and evaluates it on a testing set of a specific vulnerability detection dataset.
|
99 |
+
|
100 |
+
|
101 |
+
## Citation
|
102 |
+
|
103 |
+
Accepted as conference paper (oral presentation) at the International Joint Conference on Neural Networks (IJCNN) 2022.
|
104 |
+
Link to paper: https://ieeexplore.ieee.org/document/9892280
|
105 |
+
|
106 |
+
|
107 |
+
```bibtex
|
108 |
+
@INPROCEEDINGS{hanif2022vulberta,
|
109 |
+
author={Hanif, Hazim and Maffeis, Sergio},
|
110 |
+
booktitle={2022 International Joint Conference on Neural Networks (IJCNN)},
|
111 |
+
title={VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection},
|
112 |
+
year={2022},
|
113 |
+
volume={},
|
114 |
+
number={},
|
115 |
+
pages={1-8},
|
116 |
+
doi={10.1109/IJCNN55064.2022.9892280}
|
117 |
+
|
118 |
+
}
|
119 |
+
```
|
config.json
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "VulBERTa-MLP-MVD",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label": {
|
15 |
+
"0": "non-vulnerable",
|
16 |
+
"1": "CWE-404",
|
17 |
+
"2": "CWE-476",
|
18 |
+
"3": "CWE-119",
|
19 |
+
"4": "CWE-706",
|
20 |
+
"5": "CWE-670",
|
21 |
+
"6": "CWE-673",
|
22 |
+
"7": "CWE-119, CWE-666, CWE-573",
|
23 |
+
"8": "CWE-573",
|
24 |
+
"9": "CWE-668",
|
25 |
+
"10": "CWE-400, CWE-665, CWE-020",
|
26 |
+
"11": "CWE-662",
|
27 |
+
"12": "CWE-400",
|
28 |
+
"13": "CWE-665",
|
29 |
+
"14": "CWE-020",
|
30 |
+
"15": "CWE-074",
|
31 |
+
"16": "CWE-362",
|
32 |
+
"17": "CWE-191",
|
33 |
+
"18": "CWE-190",
|
34 |
+
"19": "CWE-610",
|
35 |
+
"20": "CWE-704",
|
36 |
+
"21": "CWE-170",
|
37 |
+
"22": "CWE-676",
|
38 |
+
"23": "CWE-187",
|
39 |
+
"24": "CWE-138",
|
40 |
+
"25": "CWE-369",
|
41 |
+
"26": "CWE-662, CWE-573",
|
42 |
+
"27": "CWE-834",
|
43 |
+
"28": "CWE-400, CWE-665",
|
44 |
+
"29": "CWE-400, CWE-404",
|
45 |
+
"30": "CWE-221",
|
46 |
+
"31": "CWE-754",
|
47 |
+
"32": "CWE-311",
|
48 |
+
"33": "CWE-404, CWE-668",
|
49 |
+
"34": "CWE-506",
|
50 |
+
"35": "CWE-758",
|
51 |
+
"36": "CWE-666",
|
52 |
+
"37": "CWE-467",
|
53 |
+
"38": "CWE-327",
|
54 |
+
"39": "CWE-666, CWE-573",
|
55 |
+
"40": "CWE-469"
|
56 |
+
},
|
57 |
+
"initializer_range": 0.02,
|
58 |
+
"intermediate_size": 3072,
|
59 |
+
"label2id": {
|
60 |
+
"CWE-020": 14,
|
61 |
+
"CWE-074": 15,
|
62 |
+
"CWE-119": 3,
|
63 |
+
"CWE-119, CWE-666, CWE-573": 7,
|
64 |
+
"CWE-138": 24,
|
65 |
+
"CWE-170": 21,
|
66 |
+
"CWE-187": 23,
|
67 |
+
"CWE-190": 18,
|
68 |
+
"CWE-191": 17,
|
69 |
+
"CWE-221": 30,
|
70 |
+
"CWE-311": 32,
|
71 |
+
"CWE-327": 38,
|
72 |
+
"CWE-362": 16,
|
73 |
+
"CWE-369": 25,
|
74 |
+
"CWE-400": 12,
|
75 |
+
"CWE-400, CWE-404": 29,
|
76 |
+
"CWE-400, CWE-665": 28,
|
77 |
+
"CWE-400, CWE-665, CWE-020": 10,
|
78 |
+
"CWE-404": 1,
|
79 |
+
"CWE-404, CWE-668": 33,
|
80 |
+
"CWE-467": 37,
|
81 |
+
"CWE-469": 40,
|
82 |
+
"CWE-476": 2,
|
83 |
+
"CWE-506": 34,
|
84 |
+
"CWE-573": 8,
|
85 |
+
"CWE-610": 19,
|
86 |
+
"CWE-662": 11,
|
87 |
+
"CWE-662, CWE-573": 26,
|
88 |
+
"CWE-665": 13,
|
89 |
+
"CWE-666": 36,
|
90 |
+
"CWE-666, CWE-573": 39,
|
91 |
+
"CWE-668": 9,
|
92 |
+
"CWE-670": 5,
|
93 |
+
"CWE-673": 6,
|
94 |
+
"CWE-676": 22,
|
95 |
+
"CWE-704": 20,
|
96 |
+
"CWE-706": 4,
|
97 |
+
"CWE-754": 31,
|
98 |
+
"CWE-758": 35,
|
99 |
+
"CWE-834": 27,
|
100 |
+
"non-vulnerable": 0
|
101 |
+
},
|
102 |
+
"layer_norm_eps": 1e-12,
|
103 |
+
"max_position_embeddings": 1026,
|
104 |
+
"model_type": "roberta",
|
105 |
+
"num_attention_heads": 12,
|
106 |
+
"num_hidden_layers": 12,
|
107 |
+
"pad_token_id": 1,
|
108 |
+
"position_embedding_type": "absolute",
|
109 |
+
"torch_dtype": "float32",
|
110 |
+
"transformers_version": "4.37.0.dev0",
|
111 |
+
"type_vocab_size": 1,
|
112 |
+
"use_cache": true,
|
113 |
+
"vocab_size": 50000
|
114 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:933e5d838fa628428fec4d15e9fcd7b7cdd7c34fd60e38e35f9a981fe1aa6491
|
3 |
+
size 499491572
|
special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pad_token": "<pad>"
|
3 |
+
}
|
tokenization_vulberta.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from tokenizers import NormalizedString, PreTokenizedString
|
4 |
+
from tokenizers.pre_tokenizers import PreTokenizer
|
5 |
+
from transformers import PreTrainedTokenizerFast
|
6 |
+
|
7 |
+
try:
|
8 |
+
from clang import cindex
|
9 |
+
except ModuleNotFoundError as e:
|
10 |
+
raise ModuleNotFoundError(
|
11 |
+
"VulBERTa Clang tokenizer requires `libclang`. Please install it via `pip install libclang`.",
|
12 |
+
) from e
|
13 |
+
|
14 |
+
|
15 |
+
class ClangPreTokenizer:
|
16 |
+
cidx = cindex.Index.create()
|
17 |
+
|
18 |
+
def clang_split(
|
19 |
+
self,
|
20 |
+
i: int,
|
21 |
+
normalized_string: NormalizedString,
|
22 |
+
) -> List[NormalizedString]:
|
23 |
+
tok = []
|
24 |
+
tu = self.cidx.parse(
|
25 |
+
"tmp.c",
|
26 |
+
args=[""],
|
27 |
+
unsaved_files=[("tmp.c", str(normalized_string.original))],
|
28 |
+
options=0,
|
29 |
+
)
|
30 |
+
for t in tu.get_tokens(extent=tu.cursor.extent):
|
31 |
+
spelling = t.spelling.strip()
|
32 |
+
if spelling == "":
|
33 |
+
continue
|
34 |
+
tok.append(NormalizedString(spelling))
|
35 |
+
return tok
|
36 |
+
|
37 |
+
def pre_tokenize(self, pretok: PreTokenizedString):
|
38 |
+
pretok.split(self.clang_split)
|
39 |
+
|
40 |
+
|
41 |
+
class VulBERTaTokenizer(PreTrainedTokenizerFast):
|
42 |
+
def __init__(
|
43 |
+
self,
|
44 |
+
*args,
|
45 |
+
**kwargs,
|
46 |
+
):
|
47 |
+
super().__init__(
|
48 |
+
*args,
|
49 |
+
**kwargs,
|
50 |
+
)
|
51 |
+
self._tokenizer.pre_tokenizer = PreTokenizer.custom(ClangPreTokenizer())
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"1": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
}
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": true,
|
13 |
+
"max_length": 1024,
|
14 |
+
"model_max_length": 1024,
|
15 |
+
"pad_to_multiple_of": null,
|
16 |
+
"pad_token": "<pad>",
|
17 |
+
"pad_token_type_id": 0,
|
18 |
+
"padding_side": "right",
|
19 |
+
"stride": 0,
|
20 |
+
"tokenizer_class": "VulBERTaTokenizer",
|
21 |
+
"auto_map": {
|
22 |
+
"AutoTokenizer": ["tokenization_vulberta.VulBERTaTokenizer", null]
|
23 |
+
},
|
24 |
+
"truncation_side": "right",
|
25 |
+
"truncation_strategy": "longest_first"
|
26 |
+
}
|