File size: 5,806 Bytes
ff4a171 4edbc82 ff4a171 bc776cf ff4a171 90f96a7 bc253dc ff4a171 42cda75 ff4a171 13661b3 1dfbf25 d80e0d7 1cc519b d80e0d7 c400a98 d80e0d7 1cc519b 4edbc82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
license: cc-by-nc-4.0
model-index:
- name: mixtral_7bx4_moe
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.27
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.28
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.84
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 59.85
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.66
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.09
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=cloudyu/mixtral_7bx4_moe
name: Open LLM Leaderboard
---
I don't know why so many downloads about this model.
Please share your cases, thanks.
Now this model is improved by DPO to [cloudyu/Pluto_24B_DPO_200](https://huggingface.co/cloudyu/Pluto_24B_DPO_200)
* Metrics improved by DPO
![Metrsc improment](dpo.jpg)
![Metrsc improment](dpo-metrics.jpg)
# Mixtral MOE 4x7B
MOE the following models by mergekit:
* [Q-bert/MetaMath-Cybertron-Starling](https://huggingface.co/Q-bert/MetaMath-Cybertron-Starling)
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
* [teknium/Mistral-Trismegistus-7B](https://huggingface.co/teknium/Mistral-Trismegistus-7B)
* [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B)
* [openchat/openchat-3.5-1210](https://huggingface.co/openchat/openchat-3.5-1210)
Metrics
* Average : 68.85
* ARC:65.36
* HellaSwag:85.23
* more details: https://huggingface.co/datasets/open-llm-leaderboard/results/blob/main/cloudyu/Mixtral_7Bx4_MOE_24B/results_2023-12-23T18-05-51.243288.json
gpu code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx4_MOE_24B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
CPU example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx4_MOE_24B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_cloudyu__mixtral_7bx4_moe)
| Metric |Value|
|---------------------------------|----:|
|Avg. |68.83|
|AI2 Reasoning Challenge (25-Shot)|65.27|
|HellaSwag (10-Shot) |85.28|
|MMLU (5-Shot) |62.84|
|TruthfulQA (0-shot) |59.85|
|Winogrande (5-shot) |77.66|
|GSM8k (5-shot) |62.09|
|