File size: 1,840 Bytes
7b839d9 525cc92 7b839d9 525cc92 7b839d9 525cc92 7b839d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: product_classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# product_classifier
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6760
- Accuracy: {'accuracy': 0.80125}
- Precision: {'precision': 0.785989926719994}
- Recall: {'recall': 0.7755906520102293}
- F1 Score: {'f1': 0.7704315421053631}
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|:-------------:|:-----:|:----:|:---------------:|:-----------------------:|:---------------------------------:|:------------------------------:|:-------------------------:|
| 0.9575 | 1.0 | 3200 | 0.6832 | {'accuracy': 0.7978125} | {'precision': 0.7851098622896849} | {'recall': 0.7737991362724596} | {'f1': 0.771520016712035} |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
|