File size: 17,745 Bytes
33514bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:16825
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/LaBSE
widget:
- source_sentence: کمپانی هند شرقی فرانسه در زمان سلطنت لویى چهاردهم، برای رقابت سیاسی،
اقتصادی و استعماری با دولت بریتانیا در هندوستان تأسیس شد.
sentences:
- کمپانی هند شرقی فرانسه در دوره پادشاهی لوئی چهاردهم تاسیس شد.
- جنگ موهاک بین کشورهای عثمانی و مجارستان رخ داد.
- فخرالدین عراقی جانشین شیخ بهاء الدین زکریا ملتانی بود.
- source_sentence: سرانجام پس از گذشت دو هفته از درخواست ایران، یک گروه کارشناسی که
فاقد عضو کارشناس سلاحهای شیمیایی بوده، به منطقه اعزام شد و نتایج مشاهدات خود را
گزارش کرد و متعاقب آن قطعنامه ٦١٢ شورای امنیت، مبنی بر محکومیت کاربرد سلاحهای
شیمیایی در جنگ ایران و عراق و بدون نام بردن از عامل کشتار صادر شد.
sentences:
- در قطعنامه ۶۱۲ شورای امنیت کاربرد سلاحهای شیمیایی بدون نام بردن از عامل کشتار
محکوم شد
- در سال ۱۳۱۷ آن اصل از متمم قانون اساسی مشروطیت که به ایرانی الاصل بودن مادر ولیعهد
اشاره می کند، دستخوش تغییر قرار گرفت.
- به عنوان نمونههایی از ویژگی های هنرهای اسلامی می توان به متعهد و راستین، مردمی
و همگانی بودن اشاره کرد.
- source_sentence: در سال ۳۳۳ پیش از میلاد ، نبرد ایسوس بین سپاه اسکندر و داریوش (آخرین
پادشاه هخامنشی) رخ داد، در این جنگ داریوش شکست خورد و خانواده اش شامل مادر و همسر
داریوش و دختران داریوش که استاتیرا و درییه تیس بودند، همگی اسیر شدند.
sentences:
- خانواده داریوش در جنگ ایسوس با اسکندر اسیر شدند.
- در نقاشی مکتب کوبیسم در فرانسه ظهور کرد.
- این جمله که کشیشهایی که در انقلاب نیکاراگوئه نقش داشتند، پیش از پیروزی انقلاب
به ایران رفت و آمد می کردند و با امام خمینی ملاقات می نمودند. از سوموزا است.
- source_sentence: مطابق ماده ۶ بند ۲ میثاق حقوق مدنی – سیاسی، در سرزمینهایی که مجازات
اعدام باطل نشده صدور حکم اعدام جائز نیست مگر در مورد مهمترین جنایات طبق قانون
لازمالاجرا در زمان ارتکاب جنایت که آن هم نباید با مقررات این میثاق و کنوانسیونها
راجع به جلوگیری و مجازات جرم کشتار دستهجمعی (ژنوسید) منافات داشته باشد.
sentences:
- ' طبق ماده ۶ میثاق حقوق مدنی - سیاسی، در کشورهایی که مجازات اعدام لغو نشده است،
صدور حکم اعدام در مهمترین جنایات مجاز است'
- مدرسه نوریه کبری جزء مدارس شام محسوب می شود.
- روز بزرگداشت سهروردی ۸ مرداد است.
- source_sentence: در جرائم مهمی که مجازات آنها قصاص نفس، اعدام، رجم و حبس ابد است،
حتما باید وکیل در دادرسی حضور داشته باشد و اگر متهم توان تعیین وکیل برای خود را
نداشته باشد، دادگاه الزاماً برای او وکیل تسخیری تعیین می کند.
sentences:
- تعیین وکیل تسخیری برای متهم در آن دسته از جرایم الزامی است که مجازات قانونی آنها
قصاص نفس، اعدام، رجم و حبس ابد است.
- در سال ۱۳۶۸ مقام نخست وزیری در ایران حذف شد.
- ضعف بنیهی دفاعی ایران، نقطه امید صدام برای حمله به ایران و پیروزی سه روزه بر
ایران بود
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on sentence-transformers/LaBSE
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE) <!-- at revision b7f947194ceae0ddf90bafe213722569e274ad28 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/FaLaBSE-v1")
# Run inference
sentences = [
'در جرائم مهمی که مجازات آنها قصاص نفس، اعدام، رجم و حبس ابد است، حتما باید وکیل در دادرسی حضور داشته باشد و اگر متهم توان تعیین وکیل برای خود را نداشته باشد، دادگاه الزاماً برای او وکیل تسخیری تعیین می کند.',
'تعیین وکیل تسخیری برای متهم در آن دسته از جرایم الزامی است که مجازات قانونی آنها قصاص نفس، اعدام، رجم و حبس ابد است.',
'در سال ۱۳۶۸ مقام نخست وزیری در ایران حذف شد.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 16,825 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 16 tokens</li><li>mean: 55.45 tokens</li><li>max: 180 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 20.45 tokens</li><li>max: 49 tokens</li></ul> |
* Samples:
| anchor | positive |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>اولین انتقال و نفوذ طبیعی فرهنگ و تمدن اسلامی به اروپا از طریق کانون های جغرافیایی مصر، اندلس و سیسیل انجام گرفت و آنچه توانست به روند این انتقال سرعت بخشد جنگ های صلیبی بود.</code> | <code>نخستین انتقال و نفوذ طبیعی فرهنگ و تمدن اسلامی به اروپا از طریق کانون های جغرافیایی مصر، اندلس و سیسیل بود و جنگ های صلیبی توانست این روند را سریع کند.</code> |
| <code>ویژگی های هنر عصر اموی: ۱- تلفیقی بودن ۲- بازنمایی نوعی تفنن و تفریح ۳- نقاشی های تزئینی و تندیس های بی کیفیت</code> | <code>نقاشی های تزئینی و تندیس های بیکیفیت، یکی از ویژگی های هنر عصر اموی است.</code> |
| <code>قبه الصخره یکی از تجلی گاه های زیبایی و ظرافت هنر اسلامی محسوب می شود و به فرمان عبدالملک بن مروان برای برگزاری روز عرفه ساخته شد.</code> | <code>قبه الصخره به فرمان عبدالملک بن مروان و برای برگزاری روز عرفه بنا گردید.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: no
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 8
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss |
|:------:|:----:|:-------------:|
| 0.2376 | 500 | 0.061 |
| 0.4753 | 1000 | 0.055 |
| 0.7129 | 1500 | 0.0572 |
| 0.9506 | 2000 | 0.0457 |
| 1.1882 | 2500 | 0.0249 |
| 1.4259 | 3000 | 0.0173 |
| 1.6635 | 3500 | 0.0142 |
| 1.9011 | 4000 | 0.0128 |
| 2.1388 | 4500 | 0.0123 |
| 2.3764 | 5000 | 0.0079 |
| 2.6141 | 5500 | 0.0094 |
| 2.8517 | 6000 | 0.0089 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |