File size: 5,265 Bytes
2ae2330
c04eb96
 
2ae2330
a0159bf
 
c04eb96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ae2330
a0159bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03afa1b
 
 
 
 
 
 
 
 
 
 
 
 
 
c04eb96
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
language:
- en
license: other
datasets:
- ehartford/WizardLM_evol_instruct_V2_196k_unfiltered_merged_split
model-index:
- name: WizardLM-33B-V1.0-Uncensored
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.65
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/WizardLM-33B-V1.0-Uncensored
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.84
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/WizardLM-33B-V1.0-Uncensored
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 59.36
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/WizardLM-33B-V1.0-Uncensored
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 56.8
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/WizardLM-33B-V1.0-Uncensored
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.66
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/WizardLM-33B-V1.0-Uncensored
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 18.65
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ehartford/WizardLM-33B-V1.0-Uncensored
      name: Open LLM Leaderboard
---

This is a retraining of https://huggingface.co/WizardLM/WizardLM-30B-V1.0 with a filtered dataset, intended to reduce refusals, avoidance, and bias.

Note that LLaMA itself has inherent ethical beliefs, so there's no such thing as a "truly uncensored" model.  But this model will be more compliant than WizardLM/WizardLM-7B-V1.0.

Shout out to the open source AI/ML community, and everyone who helped me out.

Note: An uncensored model has no guardrails. You are responsible for anything you do with the model, just as you are responsible for anything you do with any dangerous object such as a knife, gun, lighter, or car. Publishing anything this model generates is the same as publishing it yourself. You are responsible for the content you publish, and you cannot blame the model any more than you can blame the knife, gun, lighter, or car for what you do with it.

Like WizardLM/WizardLM-30B-V1.0, this model is trained with Vicuna-1.1 style prompts.

```
You are a helpful AI assistant.

USER: <prompt>
ASSISTANT:
```

Thank you [chirper.ai](https://chirper.ai) for sponsoring some of my compute!
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ehartford__WizardLM-33B-V1.0-Uncensored)

| Metric                | Value                     |
|-----------------------|---------------------------|
| Avg.                  | 54.41   |
| ARC (25-shot)         | 63.65          |
| HellaSwag (10-shot)   | 83.84    |
| MMLU (5-shot)         | 59.36         |
| TruthfulQA (0-shot)   | 56.8   |
| Winogrande (5-shot)   | 77.66   |
| GSM8K (5-shot)        | 18.65        |
| DROP (3-shot)         | 20.89         |

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ehartford__WizardLM-33B-V1.0-Uncensored)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |59.99|
|AI2 Reasoning Challenge (25-Shot)|63.65|
|HellaSwag (10-Shot)              |83.84|
|MMLU (5-Shot)                    |59.36|
|TruthfulQA (0-shot)              |56.80|
|Winogrande (5-shot)              |77.66|
|GSM8k (5-shot)                   |18.65|