cointegrated
commited on
Commit
·
ea03f7c
1
Parent(s):
83dcef3
the first commit
Browse files- README.md +27 -0
- config.json +30 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- feature-extraction
|
4 |
+
- embeddings
|
5 |
+
---
|
6 |
+
# LaBSE for English and Russian
|
7 |
+
This is a truncated version of [sentence-transformers/LaBSE](https://huggingface.co/sentence-transformers/LaBSE), which is, in turn, a port of [LaBSE](https://tfhub.dev/google/LaBSE/1) by Google.
|
8 |
+
|
9 |
+
The current model has only English and Russian tokens left in the vocabulary.
|
10 |
+
Thus, the vocabulary is 10% of the original, and number of parameters in the whole model is 27% of the original, without any loss in the quality of English and Russian embeddings.
|
11 |
+
|
12 |
+
To get the sentence embeddings, you can use the following code:
|
13 |
+
```python
|
14 |
+
from transformers import AutoTokenizer, AutoModel
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/LaBSE")
|
16 |
+
model = AutoModel.from_pretrained("sentence-transformers/LaBSE")
|
17 |
+
sentences = ["Hello World", "Hallo Welt"]
|
18 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=64, return_tensors='pt')
|
19 |
+
with torch.no_grad():
|
20 |
+
model_output = model(**encoded_input)
|
21 |
+
embeddings = model_output.pooler_output
|
22 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
23 |
+
print(embeddings)
|
24 |
+
|
25 |
+
## Reference:
|
26 |
+
Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Narveen Ari, Wei Wang. [Language-agnostic BERT Sentence Embedding](https://arxiv.org/abs/2007.01852). July 2020
|
27 |
+
License: [https://tfhub.dev/google/LaBSE/1](https://tfhub.dev/google/LaBSE/1)
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "cointegrated/LaBSE-en-ru",
|
3 |
+
"architectures": [
|
4 |
+
"BertForPreTraining"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"directionality": "bidi",
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"pooler_fc_size": 768,
|
21 |
+
"pooler_num_attention_heads": 12,
|
22 |
+
"pooler_num_fc_layers": 3,
|
23 |
+
"pooler_size_per_head": 128,
|
24 |
+
"pooler_type": "first_token_transform",
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"transformers_version": "4.5.1",
|
27 |
+
"type_vocab_size": 2,
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 55083
|
30 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d929e16c4cc9b40cdd96219e8ce3c1084129798435b3c67212efd68fa018673b
|
3 |
+
size 516063655
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": false, "model_max_length": 512}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|