Add model card
Browse filesPreliminary model card for the baseline model
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
language: cs
|
2 |
+
datasets:
|
3 |
+
- common_voice
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
tags:
|
7 |
+
- audio
|
8 |
+
- automatic-speech-recognition
|
9 |
+
- speech
|
10 |
+
- xlsr-fine-tuning-week
|
11 |
+
license: apache-2.0
|
12 |
+
model-index:
|
13 |
+
- name: {Czech Wav2Vec2 XLSR 300M}
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: Common Voice cs
|
20 |
+
type: common_voice
|
21 |
+
args: cs
|
22 |
+
metrics:
|
23 |
+
- name: Test WER
|
24 |
+
type: wer
|
25 |
+
value: {wer_result_on_test} #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value
|
26 |
+
---
|
27 |
+
|
28 |
+
# Wav2Vec2-Large-XLSR-53-Czech
|
29 |
+
|
30 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
|
31 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
32 |
+
|
33 |
+
## Usage
|
34 |
+
|
35 |
+
The model can be used directly (without a language model) as follows:
|
36 |
+
|
37 |
+
```python
|
38 |
+
import torch
|
39 |
+
import torchaudio
|
40 |
+
from datasets import load_dataset
|
41 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
42 |
+
|
43 |
+
test_dataset = load_dataset("common_voice", "cs", split="test[:2%]")
|
44 |
+
|
45 |
+
processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs")
|
46 |
+
model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs")
|
47 |
+
|
48 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
49 |
+
|
50 |
+
# Preprocessing the datasets.
|
51 |
+
# We need to read the aduio files as arrays
|
52 |
+
def speech_file_to_array_fn(batch):
|
53 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
54 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
55 |
+
return batch
|
56 |
+
|
57 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
58 |
+
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
59 |
+
|
60 |
+
with torch.no_grad():
|
61 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
62 |
+
|
63 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
64 |
+
|
65 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
66 |
+
print("Reference:", test_dataset[:2]["sentence"])
|
67 |
+
```
|
68 |
+
|
69 |
+
|
70 |
+
## Evaluation#TODO
|
71 |
+
|
72 |
+
The model can be evaluated as follows on the Czech test data of Common Voice.
|
73 |
+
|
74 |
+
|
75 |
+
```python
|
76 |
+
import torch
|
77 |
+
import torchaudio
|
78 |
+
from datasets import load_dataset, load_metric
|
79 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
80 |
+
import re
|
81 |
+
|
82 |
+
test_dataset = load_dataset("common_voice", "{lang_id}", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
|
83 |
+
wer = load_metric("wer")
|
84 |
+
|
85 |
+
processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
|
86 |
+
model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
|
87 |
+
model.to("cuda")
|
88 |
+
|
89 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
|
90 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
91 |
+
|
92 |
+
# Preprocessing the datasets.
|
93 |
+
# We need to read the aduio files as arrays
|
94 |
+
def speech_file_to_array_fn(batch):
|
95 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
96 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
97 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
98 |
+
return batch
|
99 |
+
|
100 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
101 |
+
|
102 |
+
# Preprocessing the datasets.
|
103 |
+
# We need to read the aduio files as arrays
|
104 |
+
def evaluate(batch):
|
105 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
106 |
+
|
107 |
+
with torch.no_grad():
|
108 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
109 |
+
|
110 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
111 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
112 |
+
return batch
|
113 |
+
|
114 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
115 |
+
|
116 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
117 |
+
```
|
118 |
+
|
119 |
+
**Test Result**: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.
|
120 |
+
|
121 |
+
|
122 |
+
## Training
|
123 |
+
|
124 |
+
The Common Voice `train` and `validation` datasets were used for training
|
125 |
+
|
126 |
+
The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.
|