comodoro commited on
Commit
91b4cda
·
1 Parent(s): 0173114

Add model card

Browse files

Preliminary model card for the baseline model

Files changed (1) hide show
  1. README.md +126 -0
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ language: cs
2
+ datasets:
3
+ - common_voice
4
+ metrics:
5
+ - wer
6
+ tags:
7
+ - audio
8
+ - automatic-speech-recognition
9
+ - speech
10
+ - xlsr-fine-tuning-week
11
+ license: apache-2.0
12
+ model-index:
13
+ - name: {Czech Wav2Vec2 XLSR 300M}
14
+ results:
15
+ - task:
16
+ name: Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice cs
20
+ type: common_voice
21
+ args: cs
22
+ metrics:
23
+ - name: Test WER
24
+ type: wer
25
+ value: {wer_result_on_test} #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value
26
+ ---
27
+
28
+ # Wav2Vec2-Large-XLSR-53-Czech
29
+
30
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Czech using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset.
31
+ When using this model, make sure that your speech input is sampled at 16kHz.
32
+
33
+ ## Usage
34
+
35
+ The model can be used directly (without a language model) as follows:
36
+
37
+ ```python
38
+ import torch
39
+ import torchaudio
40
+ from datasets import load_dataset
41
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
42
+
43
+ test_dataset = load_dataset("common_voice", "cs", split="test[:2%]")
44
+
45
+ processor = Wav2Vec2Processor.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs")
46
+ model = Wav2Vec2ForCTC.from_pretrained("comodoro/wav2vec2-xls-r-300m-cs")
47
+
48
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
49
+
50
+ # Preprocessing the datasets.
51
+ # We need to read the aduio files as arrays
52
+ def speech_file_to_array_fn(batch):
53
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
54
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
55
+ return batch
56
+
57
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
58
+ inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
59
+
60
+ with torch.no_grad():
61
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
+
63
+ predicted_ids = torch.argmax(logits, dim=-1)
64
+
65
+ print("Prediction:", processor.batch_decode(predicted_ids))
66
+ print("Reference:", test_dataset[:2]["sentence"])
67
+ ```
68
+
69
+
70
+ ## Evaluation#TODO
71
+
72
+ The model can be evaluated as follows on the Czech test data of Common Voice.
73
+
74
+
75
+ ```python
76
+ import torch
77
+ import torchaudio
78
+ from datasets import load_dataset, load_metric
79
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
80
+ import re
81
+
82
+ test_dataset = load_dataset("common_voice", "{lang_id}", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
83
+ wer = load_metric("wer")
84
+
85
+ processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
86
+ model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
87
+ model.to("cuda")
88
+
89
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
90
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
+
92
+ # Preprocessing the datasets.
93
+ # We need to read the aduio files as arrays
94
+ def speech_file_to_array_fn(batch):
95
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
96
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
97
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
98
+ return batch
99
+
100
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
101
+
102
+ # Preprocessing the datasets.
103
+ # We need to read the aduio files as arrays
104
+ def evaluate(batch):
105
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
106
+
107
+ with torch.no_grad():
108
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
109
+
110
+ pred_ids = torch.argmax(logits, dim=-1)
111
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
112
+ return batch
113
+
114
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
115
+
116
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
117
+ ```
118
+
119
+ **Test Result**: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.
120
+
121
+
122
+ ## Training
123
+
124
+ The Common Voice `train` and `validation` datasets were used for training
125
+
126
+ The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.