crarojasca commited on
Commit
fb41fa8
·
verified ·
1 Parent(s): 07e90eb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -1
README.md CHANGED
@@ -47,6 +47,61 @@ tags:
47
 
48
  # Code
49
 
 
 
50
  ```python
51
- your_code = do_some_stuff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
  ```
 
47
 
48
  # Code
49
 
50
+ To run the model, you need to first evaluate the binary classification model, as shown below:
51
+
52
  ```python
53
+ # Models
54
+ MAX_LEN = 256
55
+ BINARY_MODEL_DIR = "crarojasca/BinaryAugmentedCARDS"
56
+ TAXONOMY_MODEL_DIR = "crarojasca/TaxonomyAugmentedCARDS"
57
+
58
+ # Loading tokenizer
59
+ tokenizer = AutoTokenizer.from_pretrained(
60
+ BINARY_MODEL_DIR,
61
+ max_length = MAX_LEN, padding = "max_length",
62
+ return_token_type_ids = True
63
+ )
64
+
65
+ # Loading Models
66
+ ## 1. Binary Model
67
+ print("Loading binary model: {}".format(BINARY_MODEL_DIR))
68
+ config = AutoConfig.from_pretrained(BINARY_MODEL_DIR)
69
+ binary_model = AutoModelForSequenceClassification.from_pretrained(BINARY_MODEL_DIR, config=config)
70
+ binary_model.to(device)
71
+
72
+ ## 2. Taxonomy Model
73
+ print("Loading taxonomy model: {}".format(TAXONOMY_MODEL_DIR))
74
+ config = AutoConfig.from_pretrained(TAXONOMY_MODEL_DIR)
75
+ taxonomy_model = AutoModelForSequenceClassification.from_pretrained(TAXONOMY_MODEL_DIR, config=config)
76
+ taxonomy_model.to(device)
77
+
78
+ # Load Dataset
79
+ id2label = {
80
+ 0: '1_1', 1: '1_2', 2: '1_3', 3: '1_4', 4: '1_6', 5: '1_7', 6: '2_1',
81
+ 7: '2_3', 8: '3_1', 9: '3_2', 10: '3_3', 11: '4_1', 12: '4_2', 13: '4_4',
82
+ 14: '4_5', 15: '5_1', 16: '5_2', 17: '5_3'
83
+ }
84
+
85
+
86
+ text = "Climate change is just a natural phenomenon"
87
+
88
+ tokenized_text = tokenizer(text, return_tensors = "pt")
89
+
90
+
91
+ # Running Binary Model
92
+ outputs = binary_model(**tokenized_text)
93
+ binary_score = outputs.logits.softmax(dim = 1)
94
+ binary_prediction = torch.argmax(outputs.logits, axis=1)
95
+ binary_predictions = binary_prediction.to('cpu').item()
96
+
97
+ # Running Taxonomy Model
98
+ outputs = taxonomy_model(**tokenized_text)
99
+ taxonomy_score = outputs.logits.softmax(dim = 1)
100
+ taxonomy_prediction = torch.argmax(outputs.logits, axis=1)
101
+ taxonomy_prediction = taxonomy_prediction.to('cpu').item()
102
+
103
+
104
+ prediction = "0_0" if binary_prediction==0 else id2label[taxonomy_prediction]
105
+ prediction
106
+
107
  ```