Update README.md
Browse files
README.md
CHANGED
@@ -68,61 +68,43 @@ Our work can be cited as:
|
|
68 |
|
69 |
This model is a Chat model, that is, it is finetuned for Chat function and works best with the provided template.
|
70 |
|
71 |
-
#### With pipeline
|
72 |
-
|
73 |
-
```python
|
74 |
-
import torch
|
75 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
76 |
-
|
77 |
-
|
78 |
-
model_name = "croissantllm/CroissantLLMChat-v0.1"
|
79 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
80 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
|
81 |
-
|
82 |
-
messages = [
|
83 |
-
{"role": "user", "content": "Qui est le président francais ?"},
|
84 |
-
]
|
85 |
-
|
86 |
-
pipe = pipeline(
|
87 |
-
"text-generation",
|
88 |
-
model=model,
|
89 |
-
tokenizer=tokenizer,
|
90 |
-
)
|
91 |
-
|
92 |
-
generation_args = {
|
93 |
-
"max_new_tokens": 50,
|
94 |
-
"return_full_text": False,
|
95 |
-
"temperature": 0.2,
|
96 |
-
"do_sample": True,
|
97 |
-
}
|
98 |
-
|
99 |
-
output = pipe(messages, **generation_args)
|
100 |
-
print(output[0]['generated_text'])
|
101 |
-
```
|
102 |
|
103 |
#### With generate
|
104 |
|
105 |
This might require a stopping criteria on <|im_end|> token.
|
106 |
|
107 |
```python
|
108 |
-
|
109 |
import torch
|
110 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
111 |
|
112 |
|
113 |
model_name = "croissantllm/CroissantLLMChat-v0.1"
|
114 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
115 |
-
model = AutoModelForCausalLM.from_pretrained(model_name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
chat = [
|
118 |
-
{"role": "user", "content": "
|
119 |
]
|
120 |
|
121 |
chat_input = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
122 |
|
123 |
-
inputs = tokenizer(chat_input, return_tensors="pt"
|
124 |
-
tokens = model.generate(**inputs,
|
|
|
125 |
print(tokenizer.decode(tokens[0]))
|
|
|
|
|
126 |
```
|
127 |
|
128 |
|
|
|
68 |
|
69 |
This model is a Chat model, that is, it is finetuned for Chat function and works best with the provided template.
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
#### With generate
|
73 |
|
74 |
This might require a stopping criteria on <|im_end|> token.
|
75 |
|
76 |
```python
|
|
|
77 |
import torch
|
78 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
79 |
|
80 |
|
81 |
model_name = "croissantllm/CroissantLLMChat-v0.1"
|
82 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
83 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
84 |
+
|
85 |
+
|
86 |
+
generation_args = {
|
87 |
+
"max_new_tokens": 256,
|
88 |
+
"do_sample": True,
|
89 |
+
"temperature": 0.3,
|
90 |
+
"top_p": 0.90,
|
91 |
+
"top_k": 40,
|
92 |
+
"repetition_penalty": 1.05,
|
93 |
+
"eos_token_id": [tokenizer.eos_token_id, 32000],
|
94 |
+
}
|
95 |
|
96 |
chat = [
|
97 |
+
{"role": "user", "content": "Qui est le président francais actuel ?"},
|
98 |
]
|
99 |
|
100 |
chat_input = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
101 |
|
102 |
+
inputs = tokenizer(chat_input, return_tensors="pt").to(model.device)
|
103 |
+
tokens = model.generate(**inputs, **generation_args)
|
104 |
+
|
105 |
print(tokenizer.decode(tokens[0]))
|
106 |
+
# print tokens individually
|
107 |
+
print([(tokenizer.decode([tok]), tok) for tok in tokens[0].tolist()])
|
108 |
```
|
109 |
|
110 |
|