Add README
Browse files
README.md
CHANGED
@@ -41,6 +41,7 @@ This model has the following configuration:
|
|
41 |
- 768 hidden dimension
|
42 |
- 12 attention heads
|
43 |
- 11M parameters
|
|
|
44 |
|
45 |
## Intended uses & limitations
|
46 |
|
@@ -54,46 +55,6 @@ generation you should look at model like GPT2.
|
|
54 |
|
55 |
### How to use
|
56 |
|
57 |
-
You can use this model directly with a pipeline for masked language modeling:
|
58 |
-
|
59 |
-
```python
|
60 |
-
>>> from transformers import pipeline
|
61 |
-
>>> unmasker = pipeline('fill-mask', model='cservan/malbert-base-cased-32k')
|
62 |
-
>>> unmasker("Hello I'm a [MASK] model.")
|
63 |
-
[
|
64 |
-
{
|
65 |
-
"sequence": "paris est la capitale de la france.",
|
66 |
-
"score": 0.6231236457824707,
|
67 |
-
"token": 3043,
|
68 |
-
"token_str": "france"
|
69 |
-
},
|
70 |
-
{
|
71 |
-
"sequence": "paris est la capitale de la region.",
|
72 |
-
"score": 0.2993471622467041,
|
73 |
-
"token": 10531,
|
74 |
-
"token_str": "region"
|
75 |
-
},
|
76 |
-
{
|
77 |
-
"sequence": "paris est la capitale de la societe.",
|
78 |
-
"score": 0.02028230018913746,
|
79 |
-
"token": 24622,
|
80 |
-
"token_str": "societe"
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"sequence": "paris est la capitale de la bretagne.",
|
84 |
-
"score": 0.012089950032532215,
|
85 |
-
"token": 24987,
|
86 |
-
"token_str": "bretagne"
|
87 |
-
},
|
88 |
-
{
|
89 |
-
"sequence": "paris est la capitale de la chine.",
|
90 |
-
"score": 0.010002839379012585,
|
91 |
-
"token": 14860,
|
92 |
-
"token_str": "chine"
|
93 |
-
}
|
94 |
-
]
|
95 |
-
```
|
96 |
-
|
97 |
Here is how to use this model to get the features of a given text in PyTorch:
|
98 |
|
99 |
```python
|
@@ -149,25 +110,35 @@ When fine-tuned on downstream tasks, the ALBERT models achieve the following res
|
|
149 |
|
150 |
Slot-filling:
|
151 |
|
152 |
-
|
|
153 |
-
|
154 |
-
|
|
155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
### BibTeX entry and citation info
|
159 |
|
160 |
```bibtex
|
161 |
-
@inproceedings{
|
162 |
-
author = {
|
163 |
-
|
164 |
Sophie Rosset},
|
165 |
-
booktitle = {
|
166 |
-
title = {{
|
167 |
-
year = {
|
168 |
-
address = {
|
169 |
-
month =
|
170 |
}
|
171 |
```
|
172 |
|
173 |
-
Link to the paper: [PDF](https://hal.
|
|
|
41 |
- 768 hidden dimension
|
42 |
- 12 attention heads
|
43 |
- 11M parameters
|
44 |
+
- 32k of vocabulary size
|
45 |
|
46 |
## Intended uses & limitations
|
47 |
|
|
|
55 |
|
56 |
### How to use
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
Here is how to use this model to get the features of a given text in PyTorch:
|
59 |
|
60 |
```python
|
|
|
110 |
|
111 |
Slot-filling:
|
112 |
|
113 |
+
|Models ⧹ Tasks | MMNLU | MultiATIS++ | CoNLL2003 | MultiCoNER | SNIPS | MEDIA |
|
114 |
+
|---------------|--------------|--------------|--------------|--------------|--------------|--------------|
|
115 |
+
|EnALBERT | N/A | N/A | 89.67 (0.34) | 42.36 (0.22) | 95.95 (0.13) | N/A |
|
116 |
+
|FrALBERT | N/A | N/A | N/A | N/A | N/A | 81.76 (0.59)
|
117 |
+
|mALBERT-128k | 65.81 (0.11) | 89.14 (0.15) | 88.27 (0.24) | 46.01 (0.18) | 91.60 (0.31) | 83.15 (0.38) |
|
118 |
+
|mALBERT-64k | 65.29 (0.14) | 88.88 (0.14) | 86.44 (0.37) | 44.70 (0.27) | 90.84 (0.47) | 82.30 (0.19) |
|
119 |
+
|mALBERT-32k | 64.83 (0.22) | 88.60 (0.27) | 84.96 (0.41) | 44.13 (0.39) | 89.89 (0.68) | 82.04 (0.28) |
|
120 |
+
|
121 |
+
Classification task:
|
122 |
|
123 |
+
|Models ⧹ Tasks | MMNLU | MultiATIS++ | SNIPS | SST2 |
|
124 |
+
|---------------|--------------|--------------|--------------|--------------|
|
125 |
+
|mALBERT-128k | 72.35 (0.09) | 90.58 (0.98) | 96.84 (0.49) | 34.66 (1.46) |
|
126 |
+
|mALBERT-64k | 71.26 (0.11) | 90.97 (0.70) | 96.53 (0.44) | 34.64 (1.02) |
|
127 |
+
|mALBERT-32k | 70.76 (0.11) | 90.55 (0.98) | 96.49 (0.45) | 34.18 (1.64) |
|
128 |
|
129 |
### BibTeX entry and citation info
|
130 |
|
131 |
```bibtex
|
132 |
+
@inproceedings{servan2024mALBERT,
|
133 |
+
author = {Christophe Servan and
|
134 |
+
Sahar Ghannay and
|
135 |
Sophie Rosset},
|
136 |
+
booktitle = {the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
|
137 |
+
title = {{mALBERT: Is a Compact Multilingual BERT Model Still Worth It?}},
|
138 |
+
year = {2024},
|
139 |
+
address = {Torino, Italy},
|
140 |
+
month = may,
|
141 |
}
|
142 |
```
|
143 |
|
144 |
+
Link to the paper: [PDF](https://hal.science/hal-04520797)
|