|
import itertools as it |
|
import logging |
|
import pickle |
|
import re |
|
from collections import defaultdict |
|
from typing import List |
|
from pathlib import Path |
|
|
|
|
|
import numpy as np |
|
import pandas as pd |
|
import seaborn as sns |
|
import torch |
|
from datasets import Dataset, load_from_disk |
|
from transformers import ( |
|
BertForMaskedLM, |
|
BertForSequenceClassification, |
|
BertForTokenClassification, |
|
) |
|
|
|
GENE_MEDIAN_FILE = Path(__file__).parent / "gene_median_dictionary.pkl" |
|
TOKEN_DICTIONARY_FILE = Path(__file__).parent / "token_dictionary.pkl" |
|
ENSEMBL_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl" |
|
|
|
|
|
sns.set() |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
def load_and_filter(filter_data, nproc, input_data_file): |
|
data = load_from_disk(input_data_file) |
|
if filter_data is not None: |
|
data = filter_by_dict(data, filter_data, nproc) |
|
return data |
|
|
|
|
|
def filter_by_dict(data, filter_data, nproc): |
|
for key, value in filter_data.items(): |
|
|
|
def filter_data_by_criteria(example): |
|
return example[key] in value |
|
|
|
data = data.filter(filter_data_by_criteria, num_proc=nproc) |
|
if len(data) == 0: |
|
logger.error("No cells remain after filtering. Check filtering criteria.") |
|
raise |
|
return data |
|
|
|
|
|
def filter_data_by_tokens(filtered_input_data, tokens, nproc): |
|
def if_has_tokens(example): |
|
return len(set(example["input_ids"]).intersection(tokens)) == len(tokens) |
|
|
|
filtered_input_data = filtered_input_data.filter(if_has_tokens, num_proc=nproc) |
|
return filtered_input_data |
|
|
|
|
|
def logging_filtered_data_len(filtered_input_data, filtered_tokens_categ): |
|
if len(filtered_input_data) == 0: |
|
logger.error(f"No cells in dataset contain {filtered_tokens_categ}.") |
|
raise |
|
else: |
|
logger.info(f"# cells with {filtered_tokens_categ}: {len(filtered_input_data)}") |
|
|
|
|
|
def filter_data_by_tokens_and_log( |
|
filtered_input_data, tokens, nproc, filtered_tokens_categ |
|
): |
|
|
|
filtered_input_data = filter_data_by_tokens(filtered_input_data, tokens, nproc) |
|
|
|
logging_filtered_data_len(filtered_input_data, filtered_tokens_categ) |
|
|
|
return filtered_input_data |
|
|
|
|
|
def filter_data_by_start_state(filtered_input_data, cell_states_to_model, nproc): |
|
|
|
state_key = cell_states_to_model["state_key"] |
|
state_values = filtered_input_data[state_key] |
|
start_state = cell_states_to_model["start_state"] |
|
if start_state not in state_values: |
|
logger.error( |
|
f"Start state {start_state} is not present " |
|
f"in the dataset's {state_key} attribute." |
|
) |
|
raise |
|
|
|
|
|
def filter_for_origin(example): |
|
return example[state_key] in [start_state] |
|
|
|
filtered_input_data = filtered_input_data.filter(filter_for_origin, num_proc=nproc) |
|
return filtered_input_data |
|
|
|
|
|
def slice_by_inds_to_perturb(filtered_input_data, cell_inds_to_perturb): |
|
if cell_inds_to_perturb["start"] >= len(filtered_input_data): |
|
logger.error( |
|
"cell_inds_to_perturb['start'] is larger than the filtered dataset." |
|
) |
|
raise |
|
if cell_inds_to_perturb["end"] > len(filtered_input_data): |
|
logger.warning( |
|
"cell_inds_to_perturb['end'] is larger than the filtered dataset. \ |
|
Setting to the end of the filtered dataset." |
|
) |
|
cell_inds_to_perturb["end"] = len(filtered_input_data) |
|
filtered_input_data = filtered_input_data.select( |
|
[i for i in range(cell_inds_to_perturb["start"], cell_inds_to_perturb["end"])] |
|
) |
|
return filtered_input_data |
|
|
|
|
|
|
|
def load_model(model_type, num_classes, model_directory, mode): |
|
if mode == "eval": |
|
output_hidden_states = True |
|
elif mode == "train": |
|
output_hidden_states = False |
|
|
|
if model_type == "Pretrained": |
|
model = BertForMaskedLM.from_pretrained( |
|
model_directory, |
|
output_hidden_states=output_hidden_states, |
|
output_attentions=False, |
|
) |
|
elif model_type == "GeneClassifier": |
|
model = BertForTokenClassification.from_pretrained( |
|
model_directory, |
|
num_labels=num_classes, |
|
output_hidden_states=output_hidden_states, |
|
output_attentions=False, |
|
) |
|
elif model_type == "CellClassifier": |
|
model = BertForSequenceClassification.from_pretrained( |
|
model_directory, |
|
num_labels=num_classes, |
|
output_hidden_states=output_hidden_states, |
|
output_attentions=False, |
|
) |
|
|
|
if mode == "eval": |
|
model.eval() |
|
model = model.to("cuda") |
|
return model |
|
|
|
|
|
def quant_layers(model): |
|
layer_nums = [] |
|
for name, parameter in model.named_parameters(): |
|
if "layer" in name: |
|
layer_nums += [int(name.split("layer.")[1].split(".")[0])] |
|
return int(max(layer_nums)) + 1 |
|
|
|
|
|
def get_model_emb_dims(model): |
|
return model.config.hidden_size |
|
|
|
|
|
def get_model_input_size(model): |
|
return model.config.max_position_embeddings |
|
|
|
|
|
def flatten_list(megalist): |
|
return [item for sublist in megalist for item in sublist] |
|
|
|
|
|
def measure_length(example): |
|
example["length"] = len(example["input_ids"]) |
|
return example |
|
|
|
|
|
def downsample_and_sort(data, max_ncells): |
|
num_cells = len(data) |
|
|
|
if max_ncells is not None: |
|
if num_cells > max_ncells: |
|
data = data.shuffle(seed=42) |
|
num_cells = max_ncells |
|
data_subset = data.select([i for i in range(num_cells)]) |
|
|
|
data_sorted = data_subset.sort("length", reverse=True) |
|
return data_sorted |
|
|
|
|
|
def get_possible_states(cell_states_to_model): |
|
possible_states = [] |
|
for key in ["start_state", "goal_state"]: |
|
possible_states += [cell_states_to_model[key]] |
|
possible_states += cell_states_to_model.get("alt_states", []) |
|
return possible_states |
|
|
|
|
|
def forward_pass_single_cell(model, example_cell, layer_to_quant): |
|
example_cell.set_format(type="torch") |
|
input_data = example_cell["input_ids"] |
|
with torch.no_grad(): |
|
outputs = model(input_ids=input_data.to("cuda")) |
|
emb = torch.squeeze(outputs.hidden_states[layer_to_quant]) |
|
del outputs |
|
return emb |
|
|
|
|
|
def perturb_emb_by_index(emb, indices): |
|
mask = torch.ones(emb.numel(), dtype=torch.bool) |
|
mask[indices] = False |
|
return emb[mask] |
|
|
|
|
|
def delete_indices(example): |
|
indices = example["perturb_index"] |
|
if any(isinstance(el, list) for el in indices): |
|
indices = flatten_list(indices) |
|
for index in sorted(indices, reverse=True): |
|
del example["input_ids"][index] |
|
|
|
example["length"] = len(example["input_ids"]) |
|
return example |
|
|
|
|
|
|
|
def overexpress_indices(example): |
|
indices = example["perturb_index"] |
|
if any(isinstance(el, list) for el in indices): |
|
indices = flatten_list(indices) |
|
for index in sorted(indices, reverse=True): |
|
example["input_ids"].insert(0, example["input_ids"].pop(index)) |
|
|
|
example["length"] = len(example["input_ids"]) |
|
return example |
|
|
|
|
|
|
|
def overexpress_tokens(example, max_len): |
|
|
|
if example["perturb_index"] != [-100]: |
|
example = delete_indices(example) |
|
[ |
|
example["input_ids"].insert(0, token) |
|
for token in example["tokens_to_perturb"][::-1] |
|
] |
|
|
|
|
|
if len(example["input_ids"]) > max_len: |
|
example["input_ids"] = example["input_ids"][0:max_len] |
|
|
|
example["length"] = len(example["input_ids"]) |
|
return example |
|
|
|
|
|
def calc_n_overflow(max_len, example_len, tokens_to_perturb, indices_to_perturb): |
|
n_to_add = len(tokens_to_perturb) - len(indices_to_perturb) |
|
n_overflow = example_len + n_to_add - max_len |
|
return n_overflow |
|
|
|
|
|
def truncate_by_n_overflow(example): |
|
new_max_len = example["length"] - example["n_overflow"] |
|
example["input_ids"] = example["input_ids"][0:new_max_len] |
|
example["length"] = len(example["input_ids"]) |
|
return example |
|
|
|
|
|
def remove_indices_from_emb(emb, indices_to_remove, gene_dim): |
|
|
|
indices_to_keep = [ |
|
i for i in range(emb.size()[gene_dim]) if i not in indices_to_remove |
|
] |
|
num_dims = emb.dim() |
|
emb_slice = [ |
|
slice(None) if dim != gene_dim else indices_to_keep for dim in range(num_dims) |
|
] |
|
sliced_emb = emb[emb_slice] |
|
return sliced_emb |
|
|
|
|
|
def remove_indices_from_emb_batch(emb_batch, list_of_indices_to_remove, gene_dim): |
|
output_batch_list = [ |
|
remove_indices_from_emb(emb_batch[i, :, :], idxes, gene_dim - 1) |
|
for i, idxes in enumerate(list_of_indices_to_remove) |
|
] |
|
|
|
batch_max = max([emb.size()[gene_dim - 1] for emb in output_batch_list]) |
|
output_batch_list_padded = [ |
|
pad_xd_tensor(emb, 0.000, batch_max, gene_dim - 1) for emb in output_batch_list |
|
] |
|
return torch.stack(output_batch_list_padded) |
|
|
|
|
|
|
|
|
|
def remove_perturbed_indices_set( |
|
emb, |
|
perturb_type: str, |
|
indices_to_perturb: List[List], |
|
tokens_to_perturb: List[List], |
|
original_lengths: List[int], |
|
input_ids=None, |
|
): |
|
if perturb_type == "overexpress": |
|
num_perturbed = len(tokens_to_perturb) |
|
if num_perturbed == 1: |
|
indices_to_perturb_orig = [ |
|
idx if idx != [-100] else [None] for idx in indices_to_perturb |
|
] |
|
if all(v is [None] for v in indices_to_perturb_orig): |
|
return emb |
|
else: |
|
indices_to_perturb_orig = [] |
|
|
|
for idx_list in indices_to_perturb: |
|
indices_to_perturb_orig.append( |
|
[idx if idx != [-100] else [None] for idx in idx_list] |
|
) |
|
|
|
else: |
|
indices_to_perturb_orig = indices_to_perturb |
|
|
|
emb = remove_indices_from_emb_batch(emb, indices_to_perturb_orig, gene_dim=1) |
|
|
|
return emb |
|
|
|
|
|
def make_perturbation_batch( |
|
example_cell, perturb_type, tokens_to_perturb, anchor_token, combo_lvl, num_proc |
|
) -> tuple[Dataset, List[int]]: |
|
if combo_lvl == 0 and tokens_to_perturb == "all": |
|
if perturb_type in ["overexpress", "activate"]: |
|
range_start = 1 |
|
elif perturb_type in ["delete", "inhibit"]: |
|
range_start = 0 |
|
indices_to_perturb = [ |
|
[i] for i in range(range_start, example_cell["length"][0]) |
|
] |
|
|
|
|
|
elif combo_lvl > 0 and (anchor_token is not None): |
|
example_input_ids = example_cell["input_ids"][0] |
|
anchor_index = example_input_ids.index(anchor_token[0]) |
|
indices_to_perturb = [ |
|
sorted([anchor_index, i]) if i != anchor_index else None |
|
for i in range(example_cell["length"][0]) |
|
] |
|
indices_to_perturb = [item for item in indices_to_perturb if item is not None] |
|
else: |
|
example_input_ids = example_cell["input_ids"][0] |
|
indices_to_perturb = [ |
|
[example_input_ids.index(token)] if token in example_input_ids else None |
|
for token in tokens_to_perturb |
|
] |
|
indices_to_perturb = [item for item in indices_to_perturb if item is not None] |
|
|
|
|
|
if combo_lvl > 0 and (anchor_token is None): |
|
if tokens_to_perturb != "all": |
|
if len(tokens_to_perturb) == combo_lvl + 1: |
|
indices_to_perturb = [ |
|
list(x) for x in it.combinations(indices_to_perturb, combo_lvl + 1) |
|
] |
|
else: |
|
all_indices = [[i] for i in range(example_cell["length"][0])] |
|
all_indices = [ |
|
index for index in all_indices if index not in indices_to_perturb |
|
] |
|
indices_to_perturb = [ |
|
[[j for i in indices_to_perturb for j in i], x] for x in all_indices |
|
] |
|
|
|
length = len(indices_to_perturb) |
|
perturbation_dataset = Dataset.from_dict( |
|
{ |
|
"input_ids": example_cell["input_ids"] * length, |
|
"perturb_index": indices_to_perturb, |
|
} |
|
) |
|
|
|
if length < 400: |
|
num_proc_i = 1 |
|
else: |
|
num_proc_i = num_proc |
|
|
|
if perturb_type == "delete": |
|
perturbation_dataset = perturbation_dataset.map( |
|
delete_indices, num_proc=num_proc_i |
|
) |
|
elif perturb_type == "overexpress": |
|
perturbation_dataset = perturbation_dataset.map( |
|
overexpress_indices, num_proc=num_proc_i |
|
) |
|
|
|
perturbation_dataset = perturbation_dataset.map(measure_length, num_proc=num_proc_i) |
|
|
|
return perturbation_dataset, indices_to_perturb |
|
|
|
|
|
|
|
|
|
|
|
def make_comparison_batch(original_emb_batch, indices_to_perturb, perturb_group): |
|
all_embs_list = [] |
|
|
|
|
|
if perturb_group is False: |
|
|
|
if original_emb_batch.ndim == 3 and original_emb_batch.size()[0] == 1: |
|
original_emb_batch = torch.squeeze(original_emb_batch) |
|
original_emb_list = [original_emb_batch] * len(indices_to_perturb) |
|
|
|
elif perturb_group is True: |
|
original_emb_list = original_emb_batch |
|
|
|
for original_emb, indices in zip(original_emb_list, indices_to_perturb): |
|
if indices == [-100]: |
|
all_embs_list += [original_emb[:]] |
|
continue |
|
|
|
emb_list = [] |
|
start = 0 |
|
if any(isinstance(el, list) for el in indices): |
|
indices = flatten_list(indices) |
|
|
|
|
|
for i in sorted(indices): |
|
emb_list += [original_emb[start:i]] |
|
start = i + 1 |
|
|
|
emb_list += [original_emb[start:]] |
|
all_embs_list += [torch.cat(emb_list)] |
|
|
|
len_set = set([emb.size()[0] for emb in all_embs_list]) |
|
if len(len_set) > 1: |
|
max_len = max(len_set) |
|
all_embs_list = [pad_2d_tensor(emb, None, max_len, 0) for emb in all_embs_list] |
|
return torch.stack(all_embs_list) |
|
|
|
|
|
def pad_list(input_ids, pad_token_id, max_len): |
|
input_ids = np.pad( |
|
input_ids, |
|
(0, max_len - len(input_ids)), |
|
mode="constant", |
|
constant_values=pad_token_id, |
|
) |
|
return input_ids |
|
|
|
|
|
def pad_xd_tensor(tensor, pad_token_id, max_len, dim): |
|
padding_length = max_len - tensor.size()[dim] |
|
|
|
|
|
pad_config = [0] * 2 * tensor.dim() |
|
|
|
pad_config[-2 * dim - 1] = padding_length |
|
return torch.nn.functional.pad( |
|
tensor, pad=pad_config, mode="constant", value=pad_token_id |
|
) |
|
|
|
|
|
def pad_tensor(tensor, pad_token_id, max_len): |
|
tensor = torch.nn.functional.pad( |
|
tensor, pad=(0, max_len - tensor.numel()), mode="constant", value=pad_token_id |
|
) |
|
|
|
return tensor |
|
|
|
|
|
def pad_2d_tensor(tensor, pad_token_id, max_len, dim): |
|
if dim == 0: |
|
pad = (0, 0, 0, max_len - tensor.size()[dim]) |
|
elif dim == 1: |
|
pad = (0, max_len - tensor.size()[dim], 0, 0) |
|
tensor = torch.nn.functional.pad( |
|
tensor, pad=pad, mode="constant", value=pad_token_id |
|
) |
|
return tensor |
|
|
|
|
|
def pad_3d_tensor(tensor, pad_token_id, max_len, dim): |
|
if dim == 0: |
|
raise Exception("dim 0 usually does not need to be padded.") |
|
if dim == 1: |
|
pad = (0, 0, 0, max_len - tensor.size()[dim]) |
|
elif dim == 2: |
|
pad = (0, max_len - tensor.size()[dim], 0, 0) |
|
tensor = torch.nn.functional.pad( |
|
tensor, pad=pad, mode="constant", value=pad_token_id |
|
) |
|
return tensor |
|
|
|
|
|
def pad_or_truncate_encoding(encoding, pad_token_id, max_len): |
|
if isinstance(encoding, torch.Tensor): |
|
encoding_len = encoding.size()[0] |
|
elif isinstance(encoding, list): |
|
encoding_len = len(encoding) |
|
if encoding_len > max_len: |
|
encoding = encoding[0:max_len] |
|
elif encoding_len < max_len: |
|
if isinstance(encoding, torch.Tensor): |
|
encoding = pad_tensor(encoding, pad_token_id, max_len) |
|
elif isinstance(encoding, list): |
|
encoding = pad_list(encoding, pad_token_id, max_len) |
|
return encoding |
|
|
|
|
|
|
|
def pad_tensor_list( |
|
tensor_list, |
|
dynamic_or_constant, |
|
pad_token_id, |
|
model_input_size, |
|
dim=None, |
|
padding_func=None, |
|
): |
|
|
|
if dynamic_or_constant == "dynamic": |
|
max_len = max([tensor.squeeze().numel() for tensor in tensor_list]) |
|
elif isinstance(dynamic_or_constant, int): |
|
max_len = dynamic_or_constant |
|
else: |
|
max_len = model_input_size |
|
logger.warning( |
|
"If padding style is constant, must provide integer value. " |
|
f"Setting padding to max input size {model_input_size}." |
|
) |
|
|
|
|
|
if dim is None: |
|
tensor_list = [ |
|
pad_tensor(tensor, pad_token_id, max_len) for tensor in tensor_list |
|
] |
|
else: |
|
tensor_list = [ |
|
padding_func(tensor, pad_token_id, max_len, dim) for tensor in tensor_list |
|
] |
|
|
|
if padding_func != pad_3d_tensor: |
|
return torch.stack(tensor_list) |
|
else: |
|
return torch.cat(tensor_list, 0) |
|
|
|
|
|
def gen_attention_mask(minibatch_encoding, max_len=None): |
|
if max_len is None: |
|
max_len = max(minibatch_encoding["length"]) |
|
original_lens = minibatch_encoding["length"] |
|
attention_mask = [ |
|
[1] * original_len + [0] * (max_len - original_len) |
|
if original_len <= max_len |
|
else [1] * max_len |
|
for original_len in original_lens |
|
] |
|
return torch.tensor(attention_mask, device="cuda") |
|
|
|
|
|
|
|
def mean_nonpadding_embs(embs, original_lens, dim=1): |
|
|
|
mask = torch.arange(embs.size(dim), device=embs.device) < original_lens.unsqueeze(1) |
|
if embs.dim() == 3: |
|
|
|
masked_embs = embs.masked_fill(~mask.unsqueeze(2), 0.0) |
|
|
|
|
|
mean_embs = masked_embs.sum(dim) / original_lens.view(-1, 1).float() |
|
|
|
elif embs.dim() == 2: |
|
masked_embs = embs.masked_fill(~mask, 0.0) |
|
mean_embs = masked_embs.sum(dim) / original_lens.float() |
|
return mean_embs |
|
|
|
|
|
|
|
def compute_nonpadded_cell_embedding(embs, cell_emb_style): |
|
if cell_emb_style == "mean_pool": |
|
return torch.mean(embs, dim=embs.ndim - 2) |
|
|
|
|
|
|
|
def quant_cos_sims( |
|
perturbation_emb, |
|
original_emb, |
|
cell_states_to_model, |
|
state_embs_dict, |
|
emb_mode="gene", |
|
): |
|
if emb_mode == "gene": |
|
cos = torch.nn.CosineSimilarity(dim=2) |
|
elif emb_mode == "cell": |
|
cos = torch.nn.CosineSimilarity(dim=1) |
|
|
|
|
|
|
|
if cell_states_to_model is None or emb_mode == "gene": |
|
cos_sims = cos(perturbation_emb, original_emb).to("cuda") |
|
elif cell_states_to_model is not None and emb_mode == "cell": |
|
possible_states = get_possible_states(cell_states_to_model) |
|
cos_sims = dict(zip(possible_states, [[] for _ in range(len(possible_states))])) |
|
for state in possible_states: |
|
cos_sims[state] = cos_sim_shift( |
|
original_emb, |
|
perturbation_emb, |
|
state_embs_dict[state].to("cuda"), |
|
cos, |
|
) |
|
|
|
return cos_sims |
|
|
|
|
|
|
|
def cos_sim_shift(original_emb, perturbed_emb, end_emb, cos): |
|
origin_v_end = cos(original_emb, end_emb) |
|
perturb_v_end = cos(perturbed_emb, end_emb) |
|
|
|
return perturb_v_end - origin_v_end |
|
|
|
|
|
def concatenate_cos_sims(cos_sims): |
|
if isinstance(cos_sims, list): |
|
return torch.cat(cos_sims) |
|
else: |
|
for state in cos_sims.keys(): |
|
cos_sims[state] = torch.cat(cos_sims[state]) |
|
return cos_sims |
|
|
|
|
|
def write_perturbation_dictionary(cos_sims_dict: defaultdict, output_path_prefix: str): |
|
with open(f"{output_path_prefix}_raw.pickle", "wb") as fp: |
|
pickle.dump(cos_sims_dict, fp) |
|
|
|
|
|
def tensor_list_to_pd(tensor_list): |
|
tensor = torch.cat(tensor_list).cpu().numpy() |
|
df = pd.DataFrame(tensor) |
|
return df |
|
|
|
|
|
def validate_cell_states_to_model(cell_states_to_model): |
|
if cell_states_to_model is not None: |
|
if len(cell_states_to_model.items()) == 1: |
|
logger.warning( |
|
"The single value dictionary for cell_states_to_model will be " |
|
"replaced with a dictionary with named keys for start, goal, and alternate states. " |
|
"Please specify state_key, start_state, goal_state, and alt_states " |
|
"in the cell_states_to_model dictionary for future use. " |
|
"For example, cell_states_to_model={" |
|
"'state_key': 'disease', " |
|
"'start_state': 'dcm', " |
|
"'goal_state': 'nf', " |
|
"'alt_states': ['hcm', 'other1', 'other2']}" |
|
) |
|
for key, value in cell_states_to_model.items(): |
|
if (len(value) == 3) and isinstance(value, tuple): |
|
if ( |
|
isinstance(value[0], list) |
|
and isinstance(value[1], list) |
|
and isinstance(value[2], list) |
|
): |
|
if len(value[0]) == 1 and len(value[1]) == 1: |
|
all_values = value[0] + value[1] + value[2] |
|
if len(all_values) == len(set(all_values)): |
|
continue |
|
|
|
state_values = flatten_list(list(cell_states_to_model.values())) |
|
|
|
cell_states_to_model = { |
|
"state_key": list(cell_states_to_model.keys())[0], |
|
"start_state": state_values[0][0], |
|
"goal_state": state_values[1][0], |
|
"alt_states": state_values[2:][0], |
|
} |
|
elif set(cell_states_to_model.keys()).issuperset( |
|
{"state_key", "start_state", "goal_state"} |
|
): |
|
if ( |
|
(cell_states_to_model["state_key"] is None) |
|
or (cell_states_to_model["start_state"] is None) |
|
or (cell_states_to_model["goal_state"] is None) |
|
): |
|
logger.error( |
|
"Please specify 'state_key', 'start_state', and 'goal_state' in cell_states_to_model." |
|
) |
|
raise |
|
|
|
if ( |
|
cell_states_to_model["start_state"] |
|
== cell_states_to_model["goal_state"] |
|
): |
|
logger.error("All states must be unique.") |
|
raise |
|
|
|
if "alt_states" in set(cell_states_to_model.keys()): |
|
if cell_states_to_model["alt_states"] is not None: |
|
if not isinstance(cell_states_to_model["alt_states"], list): |
|
logger.error( |
|
"cell_states_to_model['alt_states'] must be a list (even if it is one element)." |
|
) |
|
raise |
|
if len(cell_states_to_model["alt_states"]) != len( |
|
set(cell_states_to_model["alt_states"]) |
|
): |
|
logger.error("All states must be unique.") |
|
raise |
|
else: |
|
cell_states_to_model["alt_states"] = [] |
|
|
|
else: |
|
logger.error( |
|
"cell_states_to_model must only have the following four keys: " |
|
"'state_key', 'start_state', 'goal_state', 'alt_states'." |
|
"For example, cell_states_to_model={" |
|
"'state_key': 'disease', " |
|
"'start_state': 'dcm', " |
|
"'goal_state': 'nf', " |
|
"'alt_states': ['hcm', 'other1', 'other2']}" |
|
) |
|
raise |
|
|
|
class GeneIdHandler: |
|
def __init__(self, raise_errors=False): |
|
def invert_dict(dict_obj): |
|
return {v:k for k,v in dict_obj.items()} |
|
|
|
self.raise_errors = raise_errors |
|
|
|
with open(TOKEN_DICTIONARY_FILE, 'rb') as f: |
|
self.gene_token_dict = pickle.load(f) |
|
self.token_gene_dict = invert_dict(self.gene_token_dict) |
|
|
|
with open(ENSEMBL_DICTIONARY_FILE, 'rb') as f: |
|
self.id_gene_dict = pickle.load(f) |
|
self.gene_id_dict = invert_dict(self.id_gene_dict) |
|
|
|
def ens_to_token(self, ens_id): |
|
if not self.raise_errors: |
|
return self.gene_token_dict.get(ens_id, ens_id) |
|
else: |
|
return self.gene_token_dict[ens_id] |
|
|
|
def token_to_ens(self, token): |
|
if not self.raise_errors: |
|
return self.token_gene_dict.get(token, token) |
|
else: |
|
return self.token_gene_dict[token] |
|
|
|
def ens_to_symbol(self, ens_id): |
|
if not self.raise_errors: |
|
return self.gene_id_dict.get(ens_id, ens_id) |
|
else: |
|
return self.gene_id_dict[ens_id] |
|
|
|
def symbol_to_ens(self, symbol): |
|
if not self.raise_errors: |
|
return self.id_gene_dict.get(symbol, symbol) |
|
else: |
|
return self.id_gene_dict[symbol] |
|
|
|
def token_to_symbol(self, token): |
|
return self.ens_to_symbol(self.token_to_ens(token)) |
|
|
|
def symbol_to_token(self, symbol): |
|
return self.ens_to_token(self.symbol_to_ens(symbol)) |
|
|