Christina Theodoris
commited on
Commit
·
277b470
1
Parent(s):
c33c308
Add alternative methods comparison examples
Browse files
benchmarking/castle_cell_type_annotation.r
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Usage: Rscript castle_cell_type_annotation.r organ
|
2 |
+
|
3 |
+
# parse ordered arguments
|
4 |
+
args <- commandArgs(trailingOnly=TRUE)
|
5 |
+
organ <- args[1]
|
6 |
+
|
7 |
+
suppressPackageStartupMessages(library(scater))
|
8 |
+
suppressPackageStartupMessages(library(xgboost))
|
9 |
+
suppressPackageStartupMessages(library(igraph))
|
10 |
+
BREAKS=c(-1, 0, 1, 6, Inf)
|
11 |
+
nFeatures = 100
|
12 |
+
|
13 |
+
print(paste("Training ", organ, sep=""))
|
14 |
+
|
15 |
+
# import training and test data
|
16 |
+
rootdir="/path/to/data/"
|
17 |
+
train_counts <- t(as.matrix(read.csv(file = paste(rootdir, organ, "_filtered_data_train.csv", sep=""), row.names = 1)))
|
18 |
+
test_counts <- t(as.matrix(read.csv(file = paste(rootdir, organ, "_filtered_data_test.csv", sep=""), row.names = 1)))
|
19 |
+
train_celltype <- as.matrix(read.csv(file = paste(rootdir, organ, "_filtered_celltype_train.csv", sep="")))
|
20 |
+
test_celltype <- as.matrix(read.csv(file = paste(rootdir, organ, "_filtered_celltype_test.csv", sep="")))
|
21 |
+
|
22 |
+
# select features
|
23 |
+
sourceCellTypes = as.factor(train_celltype[,"Cell_type"])
|
24 |
+
ds = rbind(train_counts,test_counts)
|
25 |
+
ds[is.na(ds)] <- 0
|
26 |
+
isSource = c(rep(TRUE,nrow(train_counts)), rep(FALSE,nrow(test_counts)))
|
27 |
+
topFeaturesAvg = colnames(ds[isSource,])[order(apply(ds[isSource,], 2, mean), decreasing = T)]
|
28 |
+
topFeaturesMi = names(sort(apply(ds[isSource,],2,function(x) { compare(cut(x,breaks=BREAKS),sourceCellTypes,method = "nmi") }), decreasing = T))
|
29 |
+
selectedFeatures = union(head(topFeaturesAvg, nFeatures) , head(topFeaturesMi, nFeatures) )
|
30 |
+
tmp = cor(ds[isSource,selectedFeatures], method = "pearson")
|
31 |
+
tmp[!lower.tri(tmp)] = 0
|
32 |
+
selectedFeatures = selectedFeatures[apply(tmp,2,function(x) any(x < 0.9))]
|
33 |
+
remove(tmp)
|
34 |
+
|
35 |
+
# bin expression values and expand features by bins
|
36 |
+
dsBins = apply(ds[, selectedFeatures], 2, cut, breaks= BREAKS)
|
37 |
+
nUniq = apply(dsBins, 2, function(x) { length(unique(x)) })
|
38 |
+
ds = model.matrix(~ . , as.data.frame(dsBins[,nUniq>1]))
|
39 |
+
remove(dsBins, nUniq)
|
40 |
+
|
41 |
+
# train model
|
42 |
+
train = runif(nrow(ds[isSource,]))<0.8
|
43 |
+
# slightly different setup for multiclass and binary classification
|
44 |
+
if (length(unique(sourceCellTypes)) > 2) {
|
45 |
+
xg=xgboost(data=ds[isSource,][train, ] ,
|
46 |
+
label=as.numeric(sourceCellTypes[train])-1,
|
47 |
+
objective="multi:softmax", num_class=length(unique(sourceCellTypes)),
|
48 |
+
eta=0.7 , nthread=5, nround=20, verbose=0,
|
49 |
+
gamma=0.001, max_depth=5, min_child_weight=10)
|
50 |
+
} else {
|
51 |
+
xg=xgboost(data=ds[isSource,][train, ] ,
|
52 |
+
label=as.numeric(sourceCellTypes[train])-1,
|
53 |
+
eta=0.7 , nthread=5, nround=20, verbose=0,
|
54 |
+
gamma=0.001, max_depth=5, min_child_weight=10)
|
55 |
+
}
|
56 |
+
|
57 |
+
# validate model
|
58 |
+
predictedClasses = predict(xg, ds[!isSource, ])
|
59 |
+
testCellTypes = as.factor(test_celltype[,"Cell_type"])
|
60 |
+
trueClasses <- as.numeric(testCellTypes)-1
|
61 |
+
|
62 |
+
cm <- as.matrix(table(Actual = trueClasses, Predicted = predictedClasses))
|
63 |
+
n <- sum(cm)
|
64 |
+
nc = nrow(cm) # number of classes
|
65 |
+
diag = diag(cm) # number of correctly classified instances per class
|
66 |
+
rowsums = apply(cm, 1, sum) # number of instances per class
|
67 |
+
colsums = apply(cm, 2, sum) # number of predictions per class
|
68 |
+
p = rowsums / n # distribution of instances over the actual classes
|
69 |
+
q = colsums / n # distribution of instances over the predicted classes
|
70 |
+
accuracy = sum(diag) / n
|
71 |
+
precision = diag / colsums
|
72 |
+
recall = diag / rowsums
|
73 |
+
f1 = 2 * precision * recall / (precision + recall)
|
74 |
+
macroF1 = mean(f1)
|
75 |
+
|
76 |
+
print(paste(organ, " accuracy: ", accuracy, sep=""))
|
77 |
+
print(paste(organ, " macroF1: ", macroF1, sep=""))
|
78 |
+
|
79 |
+
results_df = data.frame(Accuracy=c(accuracy),macroF1=c(macroF1))
|
80 |
+
write.csv(results_df,paste(rootdir, organ, "_castle_results_test.csv", sep=""), row.names = FALSE)
|
benchmarking/prepare_datasplits_for_cell_type_annotation.ipynb
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "25107132",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"### Preparing train and test data splits for cell type annotation application"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 3,
|
14 |
+
"id": "83d8d249-affe-45dd-915e-992b4b35b31a",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [],
|
17 |
+
"source": [
|
18 |
+
"import os\n",
|
19 |
+
"import pandas as pd\n",
|
20 |
+
"from sklearn.model_selection import train_test_split\n",
|
21 |
+
"from tqdm.notebook import tqdm\n",
|
22 |
+
"from collections import Counter\n",
|
23 |
+
"import pickle"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 4,
|
29 |
+
"id": "e3e6a2bf-44c8-4164-9ecd-1686230ea8be",
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [
|
32 |
+
{
|
33 |
+
"data": {
|
34 |
+
"text/plain": [
|
35 |
+
"['pancreas',\n",
|
36 |
+
" 'liver',\n",
|
37 |
+
" 'blood',\n",
|
38 |
+
" 'lung',\n",
|
39 |
+
" 'spleen',\n",
|
40 |
+
" 'placenta',\n",
|
41 |
+
" 'colorectum',\n",
|
42 |
+
" 'kidney',\n",
|
43 |
+
" 'brain']"
|
44 |
+
]
|
45 |
+
},
|
46 |
+
"execution_count": 4,
|
47 |
+
"metadata": {},
|
48 |
+
"output_type": "execute_result"
|
49 |
+
}
|
50 |
+
],
|
51 |
+
"source": [
|
52 |
+
"rootdir = \"/path/to/data/\"\n",
|
53 |
+
"\n",
|
54 |
+
"# collect panel of tissues to test\n",
|
55 |
+
"dir_list = []\n",
|
56 |
+
"for dir_i in os.listdir(rootdir):\n",
|
57 |
+
" if (\"results\" not in dir_i) & (os.path.isdir(os.path.join(rootdir, dir_i))):\n",
|
58 |
+
" dir_list += [dir_i]\n",
|
59 |
+
"dir_list"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "code",
|
64 |
+
"execution_count": 5,
|
65 |
+
"id": "0b205eec-a518-472a-ab90-dd63ef9803cd",
|
66 |
+
"metadata": {},
|
67 |
+
"outputs": [
|
68 |
+
{
|
69 |
+
"data": {
|
70 |
+
"text/html": [
|
71 |
+
"<div>\n",
|
72 |
+
"<style scoped>\n",
|
73 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
74 |
+
" vertical-align: middle;\n",
|
75 |
+
" }\n",
|
76 |
+
"\n",
|
77 |
+
" .dataframe tbody tr th {\n",
|
78 |
+
" vertical-align: top;\n",
|
79 |
+
" }\n",
|
80 |
+
"\n",
|
81 |
+
" .dataframe thead th {\n",
|
82 |
+
" text-align: right;\n",
|
83 |
+
" }\n",
|
84 |
+
"</style>\n",
|
85 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
86 |
+
" <thead>\n",
|
87 |
+
" <tr style=\"text-align: right;\">\n",
|
88 |
+
" <th></th>\n",
|
89 |
+
" <th>filter_pass</th>\n",
|
90 |
+
" <th>original_cell_id</th>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" </thead>\n",
|
93 |
+
" <tbody>\n",
|
94 |
+
" <tr>\n",
|
95 |
+
" <th>0</th>\n",
|
96 |
+
" <td>0</td>\n",
|
97 |
+
" <td>C_1</td>\n",
|
98 |
+
" </tr>\n",
|
99 |
+
" <tr>\n",
|
100 |
+
" <th>1</th>\n",
|
101 |
+
" <td>1</td>\n",
|
102 |
+
" <td>C_2</td>\n",
|
103 |
+
" </tr>\n",
|
104 |
+
" <tr>\n",
|
105 |
+
" <th>2</th>\n",
|
106 |
+
" <td>0</td>\n",
|
107 |
+
" <td>C_3</td>\n",
|
108 |
+
" </tr>\n",
|
109 |
+
" <tr>\n",
|
110 |
+
" <th>3</th>\n",
|
111 |
+
" <td>1</td>\n",
|
112 |
+
" <td>C_4</td>\n",
|
113 |
+
" </tr>\n",
|
114 |
+
" <tr>\n",
|
115 |
+
" <th>4</th>\n",
|
116 |
+
" <td>0</td>\n",
|
117 |
+
" <td>C_5</td>\n",
|
118 |
+
" </tr>\n",
|
119 |
+
" <tr>\n",
|
120 |
+
" <th>...</th>\n",
|
121 |
+
" <td>...</td>\n",
|
122 |
+
" <td>...</td>\n",
|
123 |
+
" </tr>\n",
|
124 |
+
" <tr>\n",
|
125 |
+
" <th>9590</th>\n",
|
126 |
+
" <td>1</td>\n",
|
127 |
+
" <td>C_9591</td>\n",
|
128 |
+
" </tr>\n",
|
129 |
+
" <tr>\n",
|
130 |
+
" <th>9591</th>\n",
|
131 |
+
" <td>1</td>\n",
|
132 |
+
" <td>C_9592</td>\n",
|
133 |
+
" </tr>\n",
|
134 |
+
" <tr>\n",
|
135 |
+
" <th>9592</th>\n",
|
136 |
+
" <td>1</td>\n",
|
137 |
+
" <td>C_9593</td>\n",
|
138 |
+
" </tr>\n",
|
139 |
+
" <tr>\n",
|
140 |
+
" <th>9593</th>\n",
|
141 |
+
" <td>1</td>\n",
|
142 |
+
" <td>C_9594</td>\n",
|
143 |
+
" </tr>\n",
|
144 |
+
" <tr>\n",
|
145 |
+
" <th>9594</th>\n",
|
146 |
+
" <td>1</td>\n",
|
147 |
+
" <td>C_9595</td>\n",
|
148 |
+
" </tr>\n",
|
149 |
+
" </tbody>\n",
|
150 |
+
"</table>\n",
|
151 |
+
"<p>9595 rows × 2 columns</p>\n",
|
152 |
+
"</div>"
|
153 |
+
],
|
154 |
+
"text/plain": [
|
155 |
+
" filter_pass original_cell_id\n",
|
156 |
+
"0 0 C_1\n",
|
157 |
+
"1 1 C_2\n",
|
158 |
+
"2 0 C_3\n",
|
159 |
+
"3 1 C_4\n",
|
160 |
+
"4 0 C_5\n",
|
161 |
+
"... ... ...\n",
|
162 |
+
"9590 1 C_9591\n",
|
163 |
+
"9591 1 C_9592\n",
|
164 |
+
"9592 1 C_9593\n",
|
165 |
+
"9593 1 C_9594\n",
|
166 |
+
"9594 1 C_9595\n",
|
167 |
+
"\n",
|
168 |
+
"[9595 rows x 2 columns]"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
"execution_count": 5,
|
172 |
+
"metadata": {},
|
173 |
+
"output_type": "execute_result"
|
174 |
+
}
|
175 |
+
],
|
176 |
+
"source": [
|
177 |
+
"# dictionary of cell barcodes that passed QC filtering applied by Geneformer \n",
|
178 |
+
"# to ensure same cells were used for comparison\n",
|
179 |
+
"with open(f\"{rootdir}deepsort_filter_dict.pickle\", \"rb\") as fp:\n",
|
180 |
+
" filter_dict = pickle.load(fp)\n",
|
181 |
+
"\n",
|
182 |
+
"# for example:\n",
|
183 |
+
"filter_dict[\"human_Placenta9595_data\"]"
|
184 |
+
]
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"cell_type": "code",
|
188 |
+
"execution_count": null,
|
189 |
+
"id": "207e3571-0236-4493-83b3-a89b67b16cb2",
|
190 |
+
"metadata": {
|
191 |
+
"tags": []
|
192 |
+
},
|
193 |
+
"outputs": [],
|
194 |
+
"source": [
|
195 |
+
"for dir_name in tqdm(dir_list):\n",
|
196 |
+
"\n",
|
197 |
+
" df = pd.DataFrame()\n",
|
198 |
+
" ct_df = pd.DataFrame(columns=[\"Cell\",\"Cell_type\"])\n",
|
199 |
+
" \n",
|
200 |
+
" subrootdir = f\"{rootdir}{dir_name}/\"\n",
|
201 |
+
" for subdir, dirs, files in os.walk(subrootdir):\n",
|
202 |
+
" for i in range(len(files)):\n",
|
203 |
+
" file = files[i]\n",
|
204 |
+
" if file.endswith(\"_data.csv\"):\n",
|
205 |
+
" file_prefix = file.replace(\"_data.csv\",\"\")\n",
|
206 |
+
" sample_prefix = file.replace(\".csv\",\"\")\n",
|
207 |
+
" filter_df = filter_dict[sample_prefix]\n",
|
208 |
+
" sample_to_analyze = list(filter_df[filter_df[\"filter_pass\"]==1][\"original_cell_id\"])\n",
|
209 |
+
" \n",
|
210 |
+
" # collect data for each tissue\n",
|
211 |
+
" df_i = pd.read_csv(f\"{subrootdir}{file}\", index_col=0)\n",
|
212 |
+
" df_i = df_i[sample_to_analyze]\n",
|
213 |
+
" df_i.columns = [f\"{i}_{cell_id}\" for cell_id in df_i.columns]\n",
|
214 |
+
" df = pd.concat([df,df_i],axis=1)\n",
|
215 |
+
" \n",
|
216 |
+
" # collect cell type metadata\n",
|
217 |
+
" ct_df_i = pd.read_csv(f\"{subrootdir}{file_prefix}_celltype.csv\", index_col=0)\n",
|
218 |
+
" ct_df_i.columns = [\"Cell\",\"Cell_type\"]\n",
|
219 |
+
" ct_df_i[\"Cell\"] = [f\"{i}_{cell_id}\" for cell_id in ct_df_i[\"Cell\"]]\n",
|
220 |
+
" ct_df = pd.concat([ct_df,ct_df_i],axis=0)\n",
|
221 |
+
" \n",
|
222 |
+
" # per published scDeepsort method, filter data for cell types >0.5% of data\n",
|
223 |
+
" ct_counts = Counter(ct_df[\"Cell_type\"])\n",
|
224 |
+
" total_count = sum(ct_counts.values())\n",
|
225 |
+
" nonrare_cell_types = [cell_type for cell_type,count in ct_counts.items() if count>(total_count*0.005)]\n",
|
226 |
+
" nonrare_cells = list(ct_df[ct_df[\"Cell_type\"].isin(nonrare_cell_types)][\"Cell\"])\n",
|
227 |
+
" df = df[df.columns.intersection(nonrare_cells)]\n",
|
228 |
+
"\n",
|
229 |
+
" # split into 80/20 train/test data\n",
|
230 |
+
" train, test = train_test_split(df.T, test_size=0.2)\n",
|
231 |
+
" train = train.T\n",
|
232 |
+
" test = test.T \n",
|
233 |
+
" \n",
|
234 |
+
" # save filtered train/test data\n",
|
235 |
+
" train.to_csv(f\"{subrootdir}{dir_name}_filtered_data_train.csv\")\n",
|
236 |
+
" test.to_csv(f\"{subrootdir}{dir_name}_filtered_data_test.csv\")\n",
|
237 |
+
"\n",
|
238 |
+
" # split metadata into train/test data\n",
|
239 |
+
" ct_df_train = ct_df[ct_df[\"Cell\"].isin(list(train.columns))]\n",
|
240 |
+
" ct_df_test = ct_df[ct_df[\"Cell\"].isin(list(test.columns))]\n",
|
241 |
+
" train_order_dict = dict(zip(train.columns,[i for i in range(len(train.columns))]))\n",
|
242 |
+
" test_order_dict = dict(zip(test.columns,[i for i in range(len(test.columns))]))\n",
|
243 |
+
" ct_df_train[\"order\"] = [train_order_dict[cell_id] for cell_id in ct_df_train[\"Cell\"]]\n",
|
244 |
+
" ct_df_test[\"order\"] = [test_order_dict[cell_id] for cell_id in ct_df_test[\"Cell\"]]\n",
|
245 |
+
" ct_df_train = ct_df_train.sort_values(\"order\")\n",
|
246 |
+
" ct_df_test = ct_df_test.sort_values(\"order\")\n",
|
247 |
+
" ct_df_train = ct_df_train.drop(\"order\",axis=1)\n",
|
248 |
+
" ct_df_test = ct_df_test.drop(\"order\",axis=1)\n",
|
249 |
+
" assert list(ct_df_train[\"Cell\"]) == list(train.columns)\n",
|
250 |
+
" assert list(ct_df_test[\"Cell\"]) == list(test.columns)\n",
|
251 |
+
" train_labels = list(Counter(ct_df_train[\"Cell_type\"]).keys())\n",
|
252 |
+
" test_labels = list(Counter(ct_df_test[\"Cell_type\"]).keys())\n",
|
253 |
+
" assert set(train_labels) == set(test_labels)\n",
|
254 |
+
" \n",
|
255 |
+
" # save train/test cell type annotations\n",
|
256 |
+
" ct_df_train.to_csv(f\"{subrootdir}{dir_name}_filtered_celltype_train.csv\")\n",
|
257 |
+
" ct_df_test.to_csv(f\"{subrootdir}{dir_name}_filtered_celltype_test.csv\")\n",
|
258 |
+
" "
|
259 |
+
]
|
260 |
+
}
|
261 |
+
],
|
262 |
+
"metadata": {
|
263 |
+
"kernelspec": {
|
264 |
+
"display_name": "Python 3.8.6 64-bit ('3.8.6')",
|
265 |
+
"language": "python",
|
266 |
+
"name": "python3"
|
267 |
+
},
|
268 |
+
"language_info": {
|
269 |
+
"codemirror_mode": {
|
270 |
+
"name": "ipython",
|
271 |
+
"version": 3
|
272 |
+
},
|
273 |
+
"file_extension": ".py",
|
274 |
+
"mimetype": "text/x-python",
|
275 |
+
"name": "python",
|
276 |
+
"nbconvert_exporter": "python",
|
277 |
+
"pygments_lexer": "ipython3",
|
278 |
+
"version": "3.8.6"
|
279 |
+
},
|
280 |
+
"vscode": {
|
281 |
+
"interpreter": {
|
282 |
+
"hash": "eba1599a1f7e611c14c87ccff6793920aa63510b01fc0e229d6dd014149b8829"
|
283 |
+
}
|
284 |
+
}
|
285 |
+
},
|
286 |
+
"nbformat": 4,
|
287 |
+
"nbformat_minor": 5
|
288 |
+
}
|
benchmarking/randomForest_token_classifier_dosageTF_10k.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
benchmarking/scDeepsort_train_predict.ipynb
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
+
"id": "83d8d249-affe-45dd-915e-992b4b35b31a",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import os\n",
|
11 |
+
"import numpy as np\n",
|
12 |
+
"import pandas as pd\n",
|
13 |
+
"import deepsort\n",
|
14 |
+
"from sklearn.metrics import accuracy_score, f1_score\n",
|
15 |
+
"from tqdm.notebook import tqdm\n",
|
16 |
+
"import pickle"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 4,
|
22 |
+
"id": "25de46ec-8a41-484d-8e14-d2b19768fc2c",
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"def compute_metrics(labels, preds):\n",
|
27 |
+
"\n",
|
28 |
+
" # calculate accuracy and macro f1 using sklearn's function\n",
|
29 |
+
" acc = accuracy_score(labels, preds)\n",
|
30 |
+
" macro_f1 = f1_score(labels, preds, average='macro')\n",
|
31 |
+
" return {\n",
|
32 |
+
" 'accuracy': acc,\n",
|
33 |
+
" 'macro_f1': macro_f1\n",
|
34 |
+
" }"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 5,
|
40 |
+
"id": "a4029b2b-afca-4300-82a2-082fec59f191",
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [
|
43 |
+
{
|
44 |
+
"data": {
|
45 |
+
"text/plain": [
|
46 |
+
"['pancreas',\n",
|
47 |
+
" 'liver',\n",
|
48 |
+
" 'blood',\n",
|
49 |
+
" 'lung',\n",
|
50 |
+
" 'spleen',\n",
|
51 |
+
" 'placenta',\n",
|
52 |
+
" 'colorectum',\n",
|
53 |
+
" 'kidney',\n",
|
54 |
+
" 'brain']"
|
55 |
+
]
|
56 |
+
},
|
57 |
+
"execution_count": 5,
|
58 |
+
"metadata": {},
|
59 |
+
"output_type": "execute_result"
|
60 |
+
}
|
61 |
+
],
|
62 |
+
"source": [
|
63 |
+
"rootdir = \"/path/to/data/\"\n",
|
64 |
+
"\n",
|
65 |
+
"dir_list = []\n",
|
66 |
+
"for dir_i in os.listdir(rootdir):\n",
|
67 |
+
" if (\"results\" not in dir_i) & (os.path.isdir(os.path.join(rootdir, dir_i))):\n",
|
68 |
+
" dir_list += [dir_i]\n",
|
69 |
+
"dir_list"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": null,
|
75 |
+
"id": "ddcdc5cd-871e-4fd2-8457-18d3049fa76c",
|
76 |
+
"metadata": {
|
77 |
+
"tags": []
|
78 |
+
},
|
79 |
+
"outputs": [],
|
80 |
+
"source": [
|
81 |
+
"output_dir = \"results_EDefault_filtered\"\n",
|
82 |
+
"n_epochs = \"Default\" # scDeepsort default epochs = 300\n",
|
83 |
+
"\n",
|
84 |
+
"results_dict = dict()\n",
|
85 |
+
"for dir_name in tqdm(dir_list):\n",
|
86 |
+
" print(f\"TRAINING: {dir_name}\")\n",
|
87 |
+
" subrootdir = f\"{rootdir}{dir_name}/\"\n",
|
88 |
+
" train_files = [(f\"{subrootdir}{dir_name}_filtered_data_train.csv\",f\"{subrootdir}{dir_name}_filtered_celltype_train.csv\")]\n",
|
89 |
+
" test_file = f\"{subrootdir}{dir_name}_filtered_data_test.csv\"\n",
|
90 |
+
" label_file = f\"{subrootdir}{dir_name}_filtered_celltype_test.csv\"\n",
|
91 |
+
" \n",
|
92 |
+
" # define the model\n",
|
93 |
+
" model = deepsort.DeepSortClassifier(species='human',\n",
|
94 |
+
" tissue=dir_name,\n",
|
95 |
+
" gpu_id=0,\n",
|
96 |
+
" random_seed=1,\n",
|
97 |
+
" validation_fraction=0) # use all training data (already held out 20% in test data file)\n",
|
98 |
+
"\n",
|
99 |
+
" # fit the model\n",
|
100 |
+
" model.fit(train_files, save_path=f\"{subrootdir}{output_dir}\")\n",
|
101 |
+
" \n",
|
102 |
+
" # use the saved model to predict cell types in test data\n",
|
103 |
+
" model.predict(input_file=test_file,\n",
|
104 |
+
" model_path=f\"{subrootdir}{output_dir}\",\n",
|
105 |
+
" save_path=f\"{subrootdir}{output_dir}\",\n",
|
106 |
+
" unsure_rate=0,\n",
|
107 |
+
" file_type='csv')\n",
|
108 |
+
" labels_df = pd.read_csv(label_file)\n",
|
109 |
+
" preds_df = pd.read_csv(f\"{subrootdir}{output_dir}/human_{dir_name}_{dir_name}_filtered_data_test.csv\")\n",
|
110 |
+
" label_cell_ids = labels_df[\"Cell\"]\n",
|
111 |
+
" pred_cell_ids = preds_df[\"index\"]\n",
|
112 |
+
" assert list(label_cell_ids) == list(pred_cell_ids)\n",
|
113 |
+
" labels = list(labels_df[\"Cell_type\"])\n",
|
114 |
+
" if isinstance(preds_df[\"cell_subtype\"][0],float):\n",
|
115 |
+
" if np.isnan(preds_df[\"cell_subtype\"][0]):\n",
|
116 |
+
" preds = list(preds_df[\"cell_type\"])\n",
|
117 |
+
" results = compute_metrics(labels, preds)\n",
|
118 |
+
" else:\n",
|
119 |
+
" preds1 = list(preds_df[\"cell_type\"])\n",
|
120 |
+
" preds2 = list(preds_df[\"cell_subtype\"])\n",
|
121 |
+
" results1 = compute_metrics(labels, preds1)\n",
|
122 |
+
" results2 = compute_metrics(labels, preds2)\n",
|
123 |
+
" if results2[\"accuracy\"] > results1[\"accuracy\"]:\n",
|
124 |
+
" results = results2\n",
|
125 |
+
" else:\n",
|
126 |
+
" results = results1\n",
|
127 |
+
" \n",
|
128 |
+
" print(f\"{dir_name}: {results}\")\n",
|
129 |
+
" results_dict[dir_name] = results\n",
|
130 |
+
" with open(f\"{subrootdir}deepsort_E{n_epochs}_filtered_pred_{dir_name}.pickle\", \"wb\") as output_file:\n",
|
131 |
+
" pickle.dump(results, output_file)\n",
|
132 |
+
"\n",
|
133 |
+
"# save results\n",
|
134 |
+
"with open(f\"{rootdir}deepsort_E{n_epochs}_filtered_pred_dict.pickle\", \"wb\") as output_file:\n",
|
135 |
+
" pickle.dump(results_dict, output_file)\n",
|
136 |
+
" "
|
137 |
+
]
|
138 |
+
}
|
139 |
+
],
|
140 |
+
"metadata": {
|
141 |
+
"kernelspec": {
|
142 |
+
"display_name": "Python 3.8.6 64-bit ('3.8.6')",
|
143 |
+
"language": "python",
|
144 |
+
"name": "python3"
|
145 |
+
},
|
146 |
+
"language_info": {
|
147 |
+
"codemirror_mode": {
|
148 |
+
"name": "ipython",
|
149 |
+
"version": 3
|
150 |
+
},
|
151 |
+
"file_extension": ".py",
|
152 |
+
"mimetype": "text/x-python",
|
153 |
+
"name": "python",
|
154 |
+
"nbconvert_exporter": "python",
|
155 |
+
"pygments_lexer": "ipython3",
|
156 |
+
"version": "3.8.6"
|
157 |
+
},
|
158 |
+
"vscode": {
|
159 |
+
"interpreter": {
|
160 |
+
"hash": "eba1599a1f7e611c14c87ccff6793920aa63510b01fc0e229d6dd014149b8829"
|
161 |
+
}
|
162 |
+
}
|
163 |
+
},
|
164 |
+
"nbformat": 4,
|
165 |
+
"nbformat_minor": 5
|
166 |
+
}
|