Christina Theodoris
commited on
Commit
·
402ba9b
1
Parent(s):
b925dcc
Subclass collator for cell classification
Browse files
examples/cell_classification.ipynb
CHANGED
@@ -1890,6 +1890,7 @@
|
|
1890 |
" \"do_train\": True,\n",
|
1891 |
" \"do_eval\": True,\n",
|
1892 |
" \"evaluation_strategy\": \"epoch\",\n",
|
|
|
1893 |
" \"logging_steps\": logging_steps,\n",
|
1894 |
" \"group_by_length\": True,\n",
|
1895 |
" \"length_column_name\": \"length\",\n",
|
@@ -1927,7 +1928,7 @@
|
|
1927 |
],
|
1928 |
"metadata": {
|
1929 |
"kernelspec": {
|
1930 |
-
"display_name": "Python 3
|
1931 |
"language": "python",
|
1932 |
"name": "python3"
|
1933 |
},
|
@@ -1941,7 +1942,7 @@
|
|
1941 |
"name": "python",
|
1942 |
"nbconvert_exporter": "python",
|
1943 |
"pygments_lexer": "ipython3",
|
1944 |
-
"version": "3.
|
1945 |
},
|
1946 |
"vscode": {
|
1947 |
"interpreter": {
|
|
|
1890 |
" \"do_train\": True,\n",
|
1891 |
" \"do_eval\": True,\n",
|
1892 |
" \"evaluation_strategy\": \"epoch\",\n",
|
1893 |
+
" \"save_strategy\": \"epoch\",\n",
|
1894 |
" \"logging_steps\": logging_steps,\n",
|
1895 |
" \"group_by_length\": True,\n",
|
1896 |
" \"length_column_name\": \"length\",\n",
|
|
|
1928 |
],
|
1929 |
"metadata": {
|
1930 |
"kernelspec": {
|
1931 |
+
"display_name": "Python 3 (ipykernel)",
|
1932 |
"language": "python",
|
1933 |
"name": "python3"
|
1934 |
},
|
|
|
1942 |
"name": "python",
|
1943 |
"nbconvert_exporter": "python",
|
1944 |
"pygments_lexer": "ipython3",
|
1945 |
+
"version": "3.10.11"
|
1946 |
},
|
1947 |
"vscode": {
|
1948 |
"interpreter": {
|
examples/gene_classification.ipynb
CHANGED
@@ -2,7 +2,6 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "markdown",
|
5 |
-
"id": "234afff3",
|
6 |
"metadata": {},
|
7 |
"source": [
|
8 |
"## Geneformer Fine-Tuning for Classification of Dosage-Sensitive vs. -Insensitive Transcription Factors (TFs)"
|
@@ -448,7 +447,6 @@
|
|
448 |
{
|
449 |
"cell_type": "code",
|
450 |
"execution_count": null,
|
451 |
-
"id": "d24e1ab7-0131-44bd-b458-1ce5ba31853e",
|
452 |
"metadata": {},
|
453 |
"outputs": [],
|
454 |
"source": [
|
@@ -2385,7 +2383,7 @@
|
|
2385 |
],
|
2386 |
"metadata": {
|
2387 |
"kernelspec": {
|
2388 |
-
"display_name": "Python 3
|
2389 |
"language": "python",
|
2390 |
"name": "python3"
|
2391 |
},
|
@@ -2399,7 +2397,7 @@
|
|
2399 |
"name": "python",
|
2400 |
"nbconvert_exporter": "python",
|
2401 |
"pygments_lexer": "ipython3",
|
2402 |
-
"version": "3.
|
2403 |
},
|
2404 |
"vscode": {
|
2405 |
"interpreter": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "markdown",
|
|
|
5 |
"metadata": {},
|
6 |
"source": [
|
7 |
"## Geneformer Fine-Tuning for Classification of Dosage-Sensitive vs. -Insensitive Transcription Factors (TFs)"
|
|
|
447 |
{
|
448 |
"cell_type": "code",
|
449 |
"execution_count": null,
|
|
|
450 |
"metadata": {},
|
451 |
"outputs": [],
|
452 |
"source": [
|
|
|
2383 |
],
|
2384 |
"metadata": {
|
2385 |
"kernelspec": {
|
2386 |
+
"display_name": "Python 3 (ipykernel)",
|
2387 |
"language": "python",
|
2388 |
"name": "python3"
|
2389 |
},
|
|
|
2397 |
"name": "python",
|
2398 |
"nbconvert_exporter": "python",
|
2399 |
"pygments_lexer": "ipython3",
|
2400 |
+
"version": "3.10.11"
|
2401 |
},
|
2402 |
"vscode": {
|
2403 |
"interpreter": {
|
geneformer/__init__.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
from . import tokenizer
|
2 |
from . import pretrainer
|
3 |
-
from . import
|
4 |
-
from . import collator_for_gene_classification
|
5 |
from . import in_silico_perturber
|
6 |
from . import in_silico_perturber_stats
|
7 |
from .tokenizer import TranscriptomeTokenizer
|
8 |
from .pretrainer import GeneformerPretrainer
|
9 |
-
from .
|
10 |
-
from .
|
11 |
from .in_silico_perturber import InSilicoPerturber
|
12 |
from .in_silico_perturber_stats import InSilicoPerturberStats
|
|
|
1 |
from . import tokenizer
|
2 |
from . import pretrainer
|
3 |
+
from . import collator_for_classification
|
|
|
4 |
from . import in_silico_perturber
|
5 |
from . import in_silico_perturber_stats
|
6 |
from .tokenizer import TranscriptomeTokenizer
|
7 |
from .pretrainer import GeneformerPretrainer
|
8 |
+
from .collator_for_classification import DataCollatorForGeneClassification
|
9 |
+
from .collator_for_classification import DataCollatorForCellClassification
|
10 |
from .in_silico_perturber import InSilicoPerturber
|
11 |
from .in_silico_perturber_stats import InSilicoPerturberStats
|
geneformer/{collator_for_cell_classification.py → collator_for_classification.py}
RENAMED
@@ -1,7 +1,7 @@
|
|
1 |
"""
|
2 |
-
Geneformer collator for cell classification.
|
3 |
|
4 |
-
Huggingface data collator modified to accommodate single-cell transcriptomics data for cell classification.
|
5 |
"""
|
6 |
import numpy as np
|
7 |
import torch
|
@@ -30,18 +30,6 @@ LARGE_INTEGER = int(
|
|
30 |
|
31 |
# precollator functions
|
32 |
|
33 |
-
def run_once(f):
|
34 |
-
def wrapper(*args, **kwargs):
|
35 |
-
if not wrapper.has_run:
|
36 |
-
wrapper.has_run = True
|
37 |
-
return f(*args, **kwargs)
|
38 |
-
wrapper.has_run = False
|
39 |
-
return wrapper
|
40 |
-
|
41 |
-
@run_once
|
42 |
-
def check_output_once(output):
|
43 |
-
return print(output)
|
44 |
-
|
45 |
class ExplicitEnum(Enum):
|
46 |
"""
|
47 |
Enum with more explicit error message for missing values.
|
@@ -91,7 +79,7 @@ class TensorType(ExplicitEnum):
|
|
91 |
JAX = "jax"
|
92 |
|
93 |
|
94 |
-
class
|
95 |
mask_token = "<mask>"
|
96 |
mask_token_id = token_dictionary.get("<mask>")
|
97 |
pad_token = "<pad>"
|
@@ -240,6 +228,7 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
240 |
Dict[str, List[EncodedInput]],
|
241 |
List[Dict[str, EncodedInput]],
|
242 |
],
|
|
|
243 |
padding: Union[bool, str, PaddingStrategy] = True,
|
244 |
max_length: Optional[int] = None,
|
245 |
pad_to_multiple_of: Optional[int] = None,
|
@@ -357,6 +346,7 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
357 |
if required_input and not isinstance(required_input[0], (list, tuple)):
|
358 |
encoded_inputs = self._pad(
|
359 |
encoded_inputs,
|
|
|
360 |
max_length=max_length,
|
361 |
padding_strategy=padding_strategy,
|
362 |
pad_to_multiple_of=pad_to_multiple_of,
|
@@ -378,6 +368,7 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
378 |
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
379 |
outputs = self._pad(
|
380 |
inputs,
|
|
|
381 |
max_length=max_length,
|
382 |
padding_strategy=padding_strategy,
|
383 |
pad_to_multiple_of=pad_to_multiple_of,
|
@@ -388,12 +379,14 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
388 |
if key not in batch_outputs:
|
389 |
batch_outputs[key] = []
|
390 |
batch_outputs[key].append(value)
|
391 |
-
|
|
|
392 |
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
393 |
|
394 |
def _pad(
|
395 |
self,
|
396 |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
|
|
397 |
max_length: Optional[int] = None,
|
398 |
padding_strategy: PaddingStrategy = PaddingStrategy.LONGEST,
|
399 |
pad_to_multiple_of: Optional[int] = None,
|
@@ -446,6 +439,8 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
446 |
if "special_tokens_mask" in encoded_inputs:
|
447 |
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
448 |
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
|
|
|
|
449 |
elif self.padding_side == "left":
|
450 |
if return_attention_mask:
|
451 |
encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
|
@@ -456,13 +451,13 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
456 |
if "special_tokens_mask" in encoded_inputs:
|
457 |
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
458 |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
|
|
|
|
459 |
else:
|
460 |
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
461 |
elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
462 |
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
463 |
|
464 |
-
# check_output_once(encoded_inputs)
|
465 |
-
|
466 |
return encoded_inputs
|
467 |
|
468 |
def get_special_tokens_mask(
|
@@ -526,7 +521,7 @@ class PrecollatorForCellClassification(SpecialTokensMixin):
|
|
526 |
|
527 |
# collator functions
|
528 |
|
529 |
-
class
|
530 |
"""
|
531 |
Data collator that will dynamically pad the inputs received, as well as the labels.
|
532 |
Args:
|
@@ -551,22 +546,49 @@ class DataCollatorForCellClassification(DataCollatorForTokenClassification):
|
|
551 |
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
552 |
"""
|
553 |
|
554 |
-
tokenizer
|
|
|
555 |
padding: Union[bool, str, PaddingStrategy] = True
|
556 |
max_length: Optional[int] = None
|
557 |
pad_to_multiple_of: Optional[int] = None
|
558 |
label_pad_token_id: int = -100
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
559 |
|
560 |
-
def
|
561 |
label_name = "label" if "label" in features[0].keys() else "labels"
|
562 |
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
563 |
batch = self.tokenizer.pad(
|
564 |
features,
|
|
|
565 |
padding=self.padding,
|
566 |
max_length=self.max_length,
|
567 |
pad_to_multiple_of=self.pad_to_multiple_of,
|
568 |
return_tensors="pt",
|
569 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
570 |
|
571 |
# Special handling for labels.
|
572 |
# Ensure that tensor is created with the correct type
|
@@ -576,6 +598,5 @@ class DataCollatorForCellClassification(DataCollatorForTokenClassification):
|
|
576 |
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
|
577 |
dtype = torch.long if isinstance(label, int) else torch.float
|
578 |
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
|
579 |
-
|
580 |
-
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
|
581 |
return batch
|
|
|
1 |
"""
|
2 |
+
Geneformer collator for gene and cell classification.
|
3 |
|
4 |
+
Huggingface data collator modified to accommodate single-cell transcriptomics data for gene and cell classification.
|
5 |
"""
|
6 |
import numpy as np
|
7 |
import torch
|
|
|
30 |
|
31 |
# precollator functions
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
class ExplicitEnum(Enum):
|
34 |
"""
|
35 |
Enum with more explicit error message for missing values.
|
|
|
79 |
JAX = "jax"
|
80 |
|
81 |
|
82 |
+
class PrecollatorForGeneAndCellClassification(SpecialTokensMixin):
|
83 |
mask_token = "<mask>"
|
84 |
mask_token_id = token_dictionary.get("<mask>")
|
85 |
pad_token = "<pad>"
|
|
|
228 |
Dict[str, List[EncodedInput]],
|
229 |
List[Dict[str, EncodedInput]],
|
230 |
],
|
231 |
+
class_type, # options: "gene" or "cell"
|
232 |
padding: Union[bool, str, PaddingStrategy] = True,
|
233 |
max_length: Optional[int] = None,
|
234 |
pad_to_multiple_of: Optional[int] = None,
|
|
|
346 |
if required_input and not isinstance(required_input[0], (list, tuple)):
|
347 |
encoded_inputs = self._pad(
|
348 |
encoded_inputs,
|
349 |
+
class_type=class_type,
|
350 |
max_length=max_length,
|
351 |
padding_strategy=padding_strategy,
|
352 |
pad_to_multiple_of=pad_to_multiple_of,
|
|
|
368 |
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
369 |
outputs = self._pad(
|
370 |
inputs,
|
371 |
+
class_type=class_type,
|
372 |
max_length=max_length,
|
373 |
padding_strategy=padding_strategy,
|
374 |
pad_to_multiple_of=pad_to_multiple_of,
|
|
|
379 |
if key not in batch_outputs:
|
380 |
batch_outputs[key] = []
|
381 |
batch_outputs[key].append(value)
|
382 |
+
if class_type == "cell":
|
383 |
+
del batch_outputs["label"]
|
384 |
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
385 |
|
386 |
def _pad(
|
387 |
self,
|
388 |
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
389 |
+
class_type, # options: "gene" or "cell"
|
390 |
max_length: Optional[int] = None,
|
391 |
padding_strategy: PaddingStrategy = PaddingStrategy.LONGEST,
|
392 |
pad_to_multiple_of: Optional[int] = None,
|
|
|
439 |
if "special_tokens_mask" in encoded_inputs:
|
440 |
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
441 |
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
442 |
+
if class_type == "gene":
|
443 |
+
encoded_inputs["labels"] = encoded_inputs["labels"] + [-100] * difference
|
444 |
elif self.padding_side == "left":
|
445 |
if return_attention_mask:
|
446 |
encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
|
|
|
451 |
if "special_tokens_mask" in encoded_inputs:
|
452 |
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
453 |
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
454 |
+
if class_type == "gene":
|
455 |
+
encoded_inputs["labels"] = [-100] * difference + encoded_inputs["labels"]
|
456 |
else:
|
457 |
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
458 |
elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
459 |
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
460 |
|
|
|
|
|
461 |
return encoded_inputs
|
462 |
|
463 |
def get_special_tokens_mask(
|
|
|
521 |
|
522 |
# collator functions
|
523 |
|
524 |
+
class DataCollatorForGeneClassification(DataCollatorForTokenClassification):
|
525 |
"""
|
526 |
Data collator that will dynamically pad the inputs received, as well as the labels.
|
527 |
Args:
|
|
|
546 |
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
547 |
"""
|
548 |
|
549 |
+
tokenizer = PrecollatorForGeneAndCellClassification()
|
550 |
+
class_type = "gene"
|
551 |
padding: Union[bool, str, PaddingStrategy] = True
|
552 |
max_length: Optional[int] = None
|
553 |
pad_to_multiple_of: Optional[int] = None
|
554 |
label_pad_token_id: int = -100
|
555 |
+
|
556 |
+
def __init__(self, *args, **kwargs) -> None:
|
557 |
+
super().__init__(
|
558 |
+
tokenizer=self.tokenizer,
|
559 |
+
padding=self.padding,
|
560 |
+
max_length=self.max_length,
|
561 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
562 |
+
label_pad_token_id=self.label_pad_token_id,
|
563 |
+
*args, **kwargs)
|
564 |
|
565 |
+
def _prepare_batch(self, features):
|
566 |
label_name = "label" if "label" in features[0].keys() else "labels"
|
567 |
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
568 |
batch = self.tokenizer.pad(
|
569 |
features,
|
570 |
+
class_type=self.class_type,
|
571 |
padding=self.padding,
|
572 |
max_length=self.max_length,
|
573 |
pad_to_multiple_of=self.pad_to_multiple_of,
|
574 |
return_tensors="pt",
|
575 |
)
|
576 |
+
return batch
|
577 |
+
|
578 |
+
def __call__(self, features):
|
579 |
+
batch = self._prepare_batch(features)
|
580 |
+
|
581 |
+
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
|
582 |
+
return batch
|
583 |
+
|
584 |
+
|
585 |
+
class DataCollatorForCellClassification(DataCollatorForGeneClassification):
|
586 |
+
|
587 |
+
class_type = "cell"
|
588 |
+
|
589 |
+
def _prepare_batch(self, features):
|
590 |
+
|
591 |
+
batch = super()._prepare_batch(features)
|
592 |
|
593 |
# Special handling for labels.
|
594 |
# Ensure that tensor is created with the correct type
|
|
|
598 |
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
|
599 |
dtype = torch.long if isinstance(label, int) else torch.float
|
600 |
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
|
601 |
+
|
|
|
602 |
return batch
|
geneformer/collator_for_gene_classification.py
DELETED
@@ -1,561 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Geneformer collator for gene classification.
|
3 |
-
|
4 |
-
Huggingface data collator modified to accommodate single-cell transcriptomics data for gene classification.
|
5 |
-
"""
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
import warnings
|
9 |
-
from enum import Enum
|
10 |
-
from typing import Dict, List, Optional, Union
|
11 |
-
|
12 |
-
from transformers import (
|
13 |
-
DataCollatorForTokenClassification,
|
14 |
-
SpecialTokensMixin,
|
15 |
-
BatchEncoding,
|
16 |
-
)
|
17 |
-
from transformers.utils import is_tf_available, is_torch_available, logging, to_py_obj
|
18 |
-
from transformers.utils.generic import _is_tensorflow, _is_torch
|
19 |
-
|
20 |
-
from .pretrainer import token_dictionary
|
21 |
-
|
22 |
-
EncodedInput = List[int]
|
23 |
-
logger = logging.get_logger(__name__)
|
24 |
-
VERY_LARGE_INTEGER = int(
|
25 |
-
1e30
|
26 |
-
) # This is used to set the max input length for a model with infinite size input
|
27 |
-
LARGE_INTEGER = int(
|
28 |
-
1e20
|
29 |
-
) # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER
|
30 |
-
|
31 |
-
# precollator functions
|
32 |
-
|
33 |
-
class ExplicitEnum(Enum):
|
34 |
-
"""
|
35 |
-
Enum with more explicit error message for missing values.
|
36 |
-
"""
|
37 |
-
|
38 |
-
@classmethod
|
39 |
-
def _missing_(cls, value):
|
40 |
-
raise ValueError(
|
41 |
-
"%r is not a valid %s, please select one of %s"
|
42 |
-
% (value, cls.__name__, str(list(cls._value2member_map_.keys())))
|
43 |
-
)
|
44 |
-
|
45 |
-
class TruncationStrategy(ExplicitEnum):
|
46 |
-
"""
|
47 |
-
Possible values for the ``truncation`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
|
48 |
-
tab-completion in an IDE.
|
49 |
-
"""
|
50 |
-
|
51 |
-
ONLY_FIRST = "only_first"
|
52 |
-
ONLY_SECOND = "only_second"
|
53 |
-
LONGEST_FIRST = "longest_first"
|
54 |
-
DO_NOT_TRUNCATE = "do_not_truncate"
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
class PaddingStrategy(ExplicitEnum):
|
59 |
-
"""
|
60 |
-
Possible values for the ``padding`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion
|
61 |
-
in an IDE.
|
62 |
-
"""
|
63 |
-
|
64 |
-
LONGEST = "longest"
|
65 |
-
MAX_LENGTH = "max_length"
|
66 |
-
DO_NOT_PAD = "do_not_pad"
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
class TensorType(ExplicitEnum):
|
71 |
-
"""
|
72 |
-
Possible values for the ``return_tensors`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
|
73 |
-
tab-completion in an IDE.
|
74 |
-
"""
|
75 |
-
|
76 |
-
PYTORCH = "pt"
|
77 |
-
TENSORFLOW = "tf"
|
78 |
-
NUMPY = "np"
|
79 |
-
JAX = "jax"
|
80 |
-
|
81 |
-
|
82 |
-
class PrecollatorForGeneClassification(SpecialTokensMixin):
|
83 |
-
mask_token = "<mask>"
|
84 |
-
mask_token_id = token_dictionary.get("<mask>")
|
85 |
-
pad_token = "<pad>"
|
86 |
-
pad_token_id = token_dictionary.get("<pad>")
|
87 |
-
padding_side = "right"
|
88 |
-
all_special_ids = [
|
89 |
-
token_dictionary.get("<mask>"),
|
90 |
-
token_dictionary.get("<pad>")
|
91 |
-
]
|
92 |
-
model_input_names = ["input_ids"]
|
93 |
-
|
94 |
-
def _get_padding_truncation_strategies(
|
95 |
-
self, padding=True, truncation=False, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
|
96 |
-
):
|
97 |
-
"""
|
98 |
-
Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy
|
99 |
-
and pad_to_max_length) and behaviors.
|
100 |
-
"""
|
101 |
-
old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate")
|
102 |
-
old_pad_to_max_length = kwargs.pop("pad_to_max_length", False)
|
103 |
-
|
104 |
-
# Backward compatibility for previous behavior, maybe we should deprecate it:
|
105 |
-
# If you only set max_length, it activates truncation for max_length
|
106 |
-
if max_length is not None and padding is False and truncation is False:
|
107 |
-
if verbose:
|
108 |
-
if not self.deprecation_warnings.get("Truncation-not-explicitly-activated", False):
|
109 |
-
logger.warning(
|
110 |
-
"Truncation was not explicitly activated but `max_length` is provided a specific value, "
|
111 |
-
"please use `truncation=True` to explicitly truncate examples to max length. "
|
112 |
-
"Defaulting to 'longest_first' truncation strategy. "
|
113 |
-
"If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy "
|
114 |
-
"more precisely by providing a specific strategy to `truncation`."
|
115 |
-
)
|
116 |
-
self.deprecation_warnings["Truncation-not-explicitly-activated"] = True
|
117 |
-
truncation = "longest_first"
|
118 |
-
|
119 |
-
# Get padding strategy
|
120 |
-
if padding is False and old_pad_to_max_length:
|
121 |
-
if verbose:
|
122 |
-
warnings.warn(
|
123 |
-
"The `pad_to_max_length` argument is deprecated and will be removed in a future version, "
|
124 |
-
"use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or "
|
125 |
-
"use `padding='max_length'` to pad to a max length. In this case, you can give a specific "
|
126 |
-
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the "
|
127 |
-
"maximal input size of the model (e.g. 512 for Bert).",
|
128 |
-
FutureWarning,
|
129 |
-
)
|
130 |
-
if max_length is None:
|
131 |
-
padding_strategy = PaddingStrategy.LONGEST
|
132 |
-
else:
|
133 |
-
padding_strategy = PaddingStrategy.MAX_LENGTH
|
134 |
-
elif padding is not False:
|
135 |
-
if padding is True:
|
136 |
-
padding_strategy = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
|
137 |
-
elif not isinstance(padding, PaddingStrategy):
|
138 |
-
padding_strategy = PaddingStrategy(padding)
|
139 |
-
elif isinstance(padding, PaddingStrategy):
|
140 |
-
padding_strategy = padding
|
141 |
-
else:
|
142 |
-
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
143 |
-
|
144 |
-
# Get truncation strategy
|
145 |
-
if truncation is False and old_truncation_strategy != "do_not_truncate":
|
146 |
-
if verbose:
|
147 |
-
warnings.warn(
|
148 |
-
"The `truncation_strategy` argument is deprecated and will be removed in a future version, "
|
149 |
-
"use `truncation=True` to truncate examples to a max length. You can give a specific "
|
150 |
-
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the "
|
151 |
-
"maximal input size of the model (e.g. 512 for Bert). "
|
152 |
-
" If you have pairs of inputs, you can give a specific truncation strategy selected among "
|
153 |
-
"`truncation='only_first'` (will only truncate the first sentence in the pairs) "
|
154 |
-
"`truncation='only_second'` (will only truncate the second sentence in the pairs) "
|
155 |
-
"or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence in the pairs).",
|
156 |
-
FutureWarning,
|
157 |
-
)
|
158 |
-
truncation_strategy = TruncationStrategy(old_truncation_strategy)
|
159 |
-
elif truncation is not False:
|
160 |
-
if truncation is True:
|
161 |
-
truncation_strategy = (
|
162 |
-
TruncationStrategy.LONGEST_FIRST
|
163 |
-
) # Default to truncate the longest sequences in pairs of inputs
|
164 |
-
elif not isinstance(truncation, TruncationStrategy):
|
165 |
-
truncation_strategy = TruncationStrategy(truncation)
|
166 |
-
elif isinstance(truncation, TruncationStrategy):
|
167 |
-
truncation_strategy = truncation
|
168 |
-
else:
|
169 |
-
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
170 |
-
|
171 |
-
# Set max length if needed
|
172 |
-
if max_length is None:
|
173 |
-
if padding_strategy == PaddingStrategy.MAX_LENGTH:
|
174 |
-
if self.model_max_length > LARGE_INTEGER:
|
175 |
-
if verbose:
|
176 |
-
if not self.deprecation_warnings.get("Asking-to-pad-to-max_length", False):
|
177 |
-
logger.warning(
|
178 |
-
"Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. "
|
179 |
-
"Default to no padding."
|
180 |
-
)
|
181 |
-
self.deprecation_warnings["Asking-to-pad-to-max_length"] = True
|
182 |
-
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
183 |
-
else:
|
184 |
-
max_length = self.model_max_length
|
185 |
-
|
186 |
-
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE:
|
187 |
-
if self.model_max_length > LARGE_INTEGER:
|
188 |
-
if verbose:
|
189 |
-
if not self.deprecation_warnings.get("Asking-to-truncate-to-max_length", False):
|
190 |
-
logger.warning(
|
191 |
-
"Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. "
|
192 |
-
"Default to no truncation."
|
193 |
-
)
|
194 |
-
self.deprecation_warnings["Asking-to-truncate-to-max_length"] = True
|
195 |
-
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
196 |
-
else:
|
197 |
-
max_length = self.model_max_length
|
198 |
-
|
199 |
-
# Test if we have a padding token
|
200 |
-
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (not self.pad_token or self.pad_token_id < 0):
|
201 |
-
raise ValueError(
|
202 |
-
"Asking to pad but the tokenizer does not have a padding token. "
|
203 |
-
"Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` "
|
204 |
-
"or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`."
|
205 |
-
)
|
206 |
-
|
207 |
-
# Check that we will truncate to a multiple of pad_to_multiple_of if both are provided
|
208 |
-
if (
|
209 |
-
truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
|
210 |
-
and padding_strategy != PaddingStrategy.DO_NOT_PAD
|
211 |
-
and pad_to_multiple_of is not None
|
212 |
-
and max_length is not None
|
213 |
-
and (max_length % pad_to_multiple_of != 0)
|
214 |
-
):
|
215 |
-
raise ValueError(
|
216 |
-
f"Truncation and padding are both activated but "
|
217 |
-
f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})."
|
218 |
-
)
|
219 |
-
|
220 |
-
return padding_strategy, truncation_strategy, max_length, kwargs
|
221 |
-
|
222 |
-
def pad(
|
223 |
-
self,
|
224 |
-
encoded_inputs: Union[
|
225 |
-
BatchEncoding,
|
226 |
-
List[BatchEncoding],
|
227 |
-
Dict[str, EncodedInput],
|
228 |
-
Dict[str, List[EncodedInput]],
|
229 |
-
List[Dict[str, EncodedInput]],
|
230 |
-
],
|
231 |
-
padding: Union[bool, str, PaddingStrategy] = True,
|
232 |
-
max_length: Optional[int] = None,
|
233 |
-
pad_to_multiple_of: Optional[int] = None,
|
234 |
-
return_attention_mask: Optional[bool] = True,
|
235 |
-
return_tensors: Optional[Union[str, TensorType]] = None,
|
236 |
-
verbose: bool = True,
|
237 |
-
) -> BatchEncoding:
|
238 |
-
"""
|
239 |
-
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
240 |
-
in the batch.
|
241 |
-
|
242 |
-
Padding side (left/right) padding token ids are defined at the tokenizer level (with ``self.padding_side``,
|
243 |
-
``self.pad_token_id`` and ``self.pad_token_type_id``)
|
244 |
-
|
245 |
-
.. note::
|
246 |
-
|
247 |
-
If the ``encoded_inputs`` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
248 |
-
result will use the same type unless you provide a different tensor type with ``return_tensors``. In the
|
249 |
-
case of PyTorch tensors, you will lose the specific device of your tensors however.
|
250 |
-
|
251 |
-
Args:
|
252 |
-
encoded_inputs (:class:`~transformers.BatchEncoding`, list of :class:`~transformers.BatchEncoding`, :obj:`Dict[str, List[int]]`, :obj:`Dict[str, List[List[int]]` or :obj:`List[Dict[str, List[int]]]`):
|
253 |
-
Tokenized inputs. Can represent one input (:class:`~transformers.BatchEncoding` or :obj:`Dict[str,
|
254 |
-
List[int]]`) or a batch of tokenized inputs (list of :class:`~transformers.BatchEncoding`, `Dict[str,
|
255 |
-
List[List[int]]]` or `List[Dict[str, List[int]]]`) so you can use this method during preprocessing as
|
256 |
-
well as in a PyTorch Dataloader collate function.
|
257 |
-
|
258 |
-
Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
259 |
-
see the note above for the return type.
|
260 |
-
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
261 |
-
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
262 |
-
index) among:
|
263 |
-
|
264 |
-
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
|
265 |
-
single sequence if provided).
|
266 |
-
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
267 |
-
maximum acceptable input length for the model if that argument is not provided.
|
268 |
-
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
269 |
-
different lengths).
|
270 |
-
max_length (:obj:`int`, `optional`):
|
271 |
-
Maximum length of the returned list and optionally padding length (see above).
|
272 |
-
pad_to_multiple_of (:obj:`int`, `optional`):
|
273 |
-
If set will pad the sequence to a multiple of the provided value.
|
274 |
-
|
275 |
-
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
276 |
-
>= 7.5 (Volta).
|
277 |
-
return_attention_mask (:obj:`bool`, `optional`):
|
278 |
-
Whether to return the attention mask. If left to the default, will return the attention mask according
|
279 |
-
to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute.
|
280 |
-
|
281 |
-
`What are attention masks? <../glossary.html#attention-mask>`__
|
282 |
-
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`):
|
283 |
-
If set, will return tensors instead of list of python integers. Acceptable values are:
|
284 |
-
|
285 |
-
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
|
286 |
-
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
|
287 |
-
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
|
288 |
-
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
289 |
-
Whether or not to print more information and warnings.
|
290 |
-
"""
|
291 |
-
# If we have a list of dicts, let's convert it in a dict of lists
|
292 |
-
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
293 |
-
if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], (dict, BatchEncoding)):
|
294 |
-
encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
|
295 |
-
|
296 |
-
# The model's main input name, usually `input_ids`, has be passed for padding
|
297 |
-
if self.model_input_names[0] not in encoded_inputs:
|
298 |
-
raise ValueError(
|
299 |
-
"You should supply an encoding or a list of encodings to this method"
|
300 |
-
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
301 |
-
)
|
302 |
-
|
303 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
304 |
-
|
305 |
-
if not required_input:
|
306 |
-
if return_attention_mask:
|
307 |
-
encoded_inputs["attention_mask"] = []
|
308 |
-
return encoded_inputs
|
309 |
-
|
310 |
-
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
311 |
-
# and rebuild them afterwards if no return_tensors is specified
|
312 |
-
# Note that we lose the specific device the tensor may be on for PyTorch
|
313 |
-
|
314 |
-
first_element = required_input[0]
|
315 |
-
if isinstance(first_element, (list, tuple)):
|
316 |
-
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
317 |
-
index = 0
|
318 |
-
while len(required_input[index]) == 0:
|
319 |
-
index += 1
|
320 |
-
if index < len(required_input):
|
321 |
-
first_element = required_input[index][0]
|
322 |
-
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
323 |
-
if not isinstance(first_element, (int, list, tuple)):
|
324 |
-
if is_tf_available() and _is_tensorflow(first_element):
|
325 |
-
return_tensors = "tf" if return_tensors is None else return_tensors
|
326 |
-
elif is_torch_available() and _is_torch(first_element):
|
327 |
-
return_tensors = "pt" if return_tensors is None else return_tensors
|
328 |
-
elif isinstance(first_element, np.ndarray):
|
329 |
-
return_tensors = "np" if return_tensors is None else return_tensors
|
330 |
-
else:
|
331 |
-
raise ValueError(
|
332 |
-
f"type of {first_element} unknown: {type(first_element)}. "
|
333 |
-
f"Should be one of a python, numpy, pytorch or tensorflow object."
|
334 |
-
)
|
335 |
-
|
336 |
-
for key, value in encoded_inputs.items():
|
337 |
-
encoded_inputs[key] = to_py_obj(value)
|
338 |
-
|
339 |
-
# Convert padding_strategy in PaddingStrategy
|
340 |
-
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
341 |
-
padding=padding, max_length=max_length, verbose=verbose
|
342 |
-
)
|
343 |
-
|
344 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
345 |
-
if required_input and not isinstance(required_input[0], (list, tuple)):
|
346 |
-
encoded_inputs = self._pad(
|
347 |
-
encoded_inputs,
|
348 |
-
max_length=max_length,
|
349 |
-
padding_strategy=padding_strategy,
|
350 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
351 |
-
return_attention_mask=return_attention_mask,
|
352 |
-
)
|
353 |
-
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
354 |
-
|
355 |
-
batch_size = len(required_input)
|
356 |
-
assert all(
|
357 |
-
len(v) == batch_size for v in encoded_inputs.values()
|
358 |
-
), "Some items in the output dictionary have a different batch size than others."
|
359 |
-
|
360 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
361 |
-
max_length = max(len(inputs) for inputs in required_input)
|
362 |
-
padding_strategy = PaddingStrategy.MAX_LENGTH
|
363 |
-
|
364 |
-
batch_outputs = {}
|
365 |
-
for i in range(batch_size):
|
366 |
-
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
367 |
-
outputs = self._pad(
|
368 |
-
inputs,
|
369 |
-
max_length=max_length,
|
370 |
-
padding_strategy=padding_strategy,
|
371 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
372 |
-
return_attention_mask=return_attention_mask,
|
373 |
-
)
|
374 |
-
|
375 |
-
for key, value in outputs.items():
|
376 |
-
if key not in batch_outputs:
|
377 |
-
batch_outputs[key] = []
|
378 |
-
batch_outputs[key].append(value)
|
379 |
-
|
380 |
-
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
381 |
-
|
382 |
-
def _pad(
|
383 |
-
self,
|
384 |
-
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
385 |
-
max_length: Optional[int] = None,
|
386 |
-
padding_strategy: PaddingStrategy = PaddingStrategy.LONGEST,
|
387 |
-
pad_to_multiple_of: Optional[int] = None,
|
388 |
-
return_attention_mask: Optional[bool] = True,
|
389 |
-
) -> dict:
|
390 |
-
"""
|
391 |
-
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
392 |
-
|
393 |
-
Args:
|
394 |
-
encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
395 |
-
max_length: maximum length of the returned list and optionally padding length (see below).
|
396 |
-
Will truncate by taking into account the special tokens.
|
397 |
-
padding_strategy: PaddingStrategy to use for padding.
|
398 |
-
|
399 |
-
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
400 |
-
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
401 |
-
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
402 |
-
The tokenizer padding sides are defined in self.padding_side:
|
403 |
-
|
404 |
-
- 'left': pads on the left of the sequences
|
405 |
-
- 'right': pads on the right of the sequences
|
406 |
-
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
407 |
-
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
408 |
-
>= 7.5 (Volta).
|
409 |
-
return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
410 |
-
"""
|
411 |
-
# Load from model defaults
|
412 |
-
if return_attention_mask is None:
|
413 |
-
return_attention_mask = "attention_mask" in self.model_input_names
|
414 |
-
|
415 |
-
required_input = encoded_inputs[self.model_input_names[0]]
|
416 |
-
|
417 |
-
if padding_strategy == PaddingStrategy.LONGEST:
|
418 |
-
max_length = len(required_input)
|
419 |
-
|
420 |
-
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
421 |
-
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
422 |
-
|
423 |
-
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
424 |
-
|
425 |
-
if needs_to_be_padded:
|
426 |
-
difference = max_length - len(required_input)
|
427 |
-
if self.padding_side == "right":
|
428 |
-
if return_attention_mask:
|
429 |
-
encoded_inputs["attention_mask"] = [1] * len(required_input) + [0] * difference
|
430 |
-
if "token_type_ids" in encoded_inputs:
|
431 |
-
encoded_inputs["token_type_ids"] = (
|
432 |
-
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
433 |
-
)
|
434 |
-
if "special_tokens_mask" in encoded_inputs:
|
435 |
-
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
436 |
-
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
437 |
-
encoded_inputs["labels"] = encoded_inputs["labels"] + [-100] * difference
|
438 |
-
elif self.padding_side == "left":
|
439 |
-
if return_attention_mask:
|
440 |
-
encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
|
441 |
-
if "token_type_ids" in encoded_inputs:
|
442 |
-
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
443 |
-
"token_type_ids"
|
444 |
-
]
|
445 |
-
if "special_tokens_mask" in encoded_inputs:
|
446 |
-
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
447 |
-
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
448 |
-
encoded_inputs["labels"] = [-100] * difference + encoded_inputs["labels"]
|
449 |
-
else:
|
450 |
-
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
451 |
-
elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
452 |
-
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
453 |
-
|
454 |
-
# check_output_once(encoded_inputs)
|
455 |
-
|
456 |
-
return encoded_inputs
|
457 |
-
|
458 |
-
def get_special_tokens_mask(
|
459 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
460 |
-
) -> List[int]:
|
461 |
-
"""
|
462 |
-
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
463 |
-
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
|
464 |
-
Args:
|
465 |
-
token_ids_0 (:obj:`List[int]`):
|
466 |
-
List of ids of the first sequence.
|
467 |
-
token_ids_1 (:obj:`List[int]`, `optional`):
|
468 |
-
List of ids of the second sequence.
|
469 |
-
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
470 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
471 |
-
Returns:
|
472 |
-
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
473 |
-
"""
|
474 |
-
assert already_has_special_tokens and token_ids_1 is None, (
|
475 |
-
"You cannot use ``already_has_special_tokens=False`` with this tokenizer. "
|
476 |
-
"Please use a slow (full python) tokenizer to activate this argument."
|
477 |
-
"Or set `return_special_tokens_mask=True` when calling the encoding method "
|
478 |
-
"to get the special tokens mask in any tokenizer. "
|
479 |
-
)
|
480 |
-
|
481 |
-
all_special_ids = self.all_special_ids # cache the property
|
482 |
-
|
483 |
-
special_tokens_mask = [1 if token in all_special_ids else 0 for token in token_ids_0]
|
484 |
-
|
485 |
-
return special_tokens_mask
|
486 |
-
|
487 |
-
def convert_tokens_to_ids(self, tokens: Union[str, List[str]]) -> Union[int, List[int]]:
|
488 |
-
"""
|
489 |
-
Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
|
490 |
-
vocabulary.
|
491 |
-
Args:
|
492 |
-
tokens (:obj:`str` or :obj:`List[str]`): One or several token(s) to convert to token id(s).
|
493 |
-
Returns:
|
494 |
-
:obj:`int` or :obj:`List[int]`: The token id or list of token ids.
|
495 |
-
"""
|
496 |
-
if tokens is None:
|
497 |
-
return None
|
498 |
-
|
499 |
-
if isinstance(tokens, str):
|
500 |
-
return self._convert_token_to_id_with_added_voc(tokens)
|
501 |
-
|
502 |
-
ids = []
|
503 |
-
for token in tokens:
|
504 |
-
ids.append(self._convert_token_to_id_with_added_voc(token))
|
505 |
-
return ids
|
506 |
-
|
507 |
-
def _convert_token_to_id_with_added_voc(self, token):
|
508 |
-
if token is None:
|
509 |
-
return None
|
510 |
-
|
511 |
-
return token_dictionary.get(token)
|
512 |
-
|
513 |
-
def __len__(self):
|
514 |
-
return len(token_dictionary)
|
515 |
-
|
516 |
-
# collator functions
|
517 |
-
|
518 |
-
class DataCollatorForGeneClassification(DataCollatorForTokenClassification):
|
519 |
-
"""
|
520 |
-
Data collator that will dynamically pad the inputs received, as well as the labels.
|
521 |
-
Args:
|
522 |
-
tokenizer (:class:`~transformers.PreTrainedTokenizer` or :class:`~transformers.PreTrainedTokenizerFast`):
|
523 |
-
The tokenizer used for encoding the data.
|
524 |
-
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
525 |
-
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
526 |
-
among:
|
527 |
-
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
528 |
-
sequence if provided).
|
529 |
-
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
530 |
-
maximum acceptable input length for the model if that argument is not provided.
|
531 |
-
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
532 |
-
different lengths).
|
533 |
-
max_length (:obj:`int`, `optional`):
|
534 |
-
Maximum length of the returned list and optionally padding length (see above).
|
535 |
-
pad_to_multiple_of (:obj:`int`, `optional`):
|
536 |
-
If set will pad the sequence to a multiple of the provided value.
|
537 |
-
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
538 |
-
7.5 (Volta).
|
539 |
-
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
|
540 |
-
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
541 |
-
"""
|
542 |
-
|
543 |
-
tokenizer: PrecollatorForGeneClassification()
|
544 |
-
padding: Union[bool, str, PaddingStrategy] = True
|
545 |
-
max_length: Optional[int] = None
|
546 |
-
pad_to_multiple_of: Optional[int] = None
|
547 |
-
label_pad_token_id: int = -100
|
548 |
-
|
549 |
-
def __call__(self, features):
|
550 |
-
label_name = "label" if "label" in features[0].keys() else "labels"
|
551 |
-
labels = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
|
552 |
-
batch = self.tokenizer.pad(
|
553 |
-
features,
|
554 |
-
padding=self.padding,
|
555 |
-
max_length=self.max_length,
|
556 |
-
pad_to_multiple_of=self.pad_to_multiple_of,
|
557 |
-
return_tensors="pt",
|
558 |
-
)
|
559 |
-
|
560 |
-
batch = {k: torch.tensor(v, dtype=torch.int64) for k, v in batch.items()}
|
561 |
-
return batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|