ctheodoris
commited on
Commit
Β·
933ca80
1
Parent(s):
ec19834
update with 12L and 20L i4096 gc95M models, multitask and quantiz code
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- .gitattributes +1 -1
- MANIFEST.in +3 -3
- config.json +9 -8
- fine_tuned_models/gf-12L-95M-i4096_MTLCellClassifier_CELLxGENE_240522/config.json +24 -0
- fine_tuned_models/gf-12L-95M-i4096_MTLCellClassifier_CELLxGENE_240522/pytorch_model.bin +3 -0
- fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/config.json +0 -0
- fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/optimizer.pt +0 -0
- fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/pytorch_model.bin +0 -0
- fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/rng_state.pth +0 -0
- fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/scheduler.pt +0 -0
- fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/trainer_state.json +0 -0
- fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/training_args.bin +0 -0
- geneformer/__init__.py +10 -5
- geneformer/classifier.py +74 -16
- geneformer/classifier_utils.py +117 -5
- geneformer/collator_for_classification.py +15 -19
- geneformer/emb_extractor.py +20 -13
- geneformer/gene_dictionaries_30m/gene_median_dictionary_gc30M.pkl +3 -0
- geneformer/{gene_name_id_dict.pkl β gene_dictionaries_30m/gene_name_id_dict_gc30M.pkl} +0 -0
- geneformer/gene_dictionaries_30m/token_dictionary_gc30M.pkl +3 -0
- geneformer/gene_median_dictionary.pkl +0 -0
- geneformer/in_silico_perturber.py +733 -143
- geneformer/in_silico_perturber_stats.py +22 -6
- geneformer/mtl/__init__.py +0 -0
- geneformer/mtl/collators.py +66 -0
- geneformer/mtl/data.py +116 -0
- geneformer/mtl/eval_utils.py +81 -0
- geneformer/mtl/imports.py +46 -0
- geneformer/mtl/model.py +84 -0
- geneformer/mtl/optuna_utils.py +21 -0
- geneformer/mtl/train.py +242 -0
- geneformer/mtl/train_utils.py +126 -0
- geneformer/mtl/utils.py +106 -0
- geneformer/mtl_classifier.py +338 -0
- geneformer/perturber_utils.py +168 -16
- geneformer/pretrainer.py +0 -13
- geneformer/token_dictionary.pkl +0 -0
- geneformer/token_dictionary_gc95M.pkl +0 -0
- generation_config.json +5 -0
- {geneformer-12L-30M β gf-12L-30M-i2048}/config.json +0 -0
- {geneformer-12L-30M β gf-12L-30M-i2048}/pytorch_model.bin +0 -0
- {geneformer-12L-30M β gf-12L-30M-i2048}/training_args.bin +0 -0
- gf-12L-95M-i4096/config.json +24 -0
- gf-12L-95M-i4096/generation_config.json +5 -0
- gf-12L-95M-i4096/model.safetensors +3 -0
- gf-12L-95M-i4096/training_args.bin +3 -0
- gf-12L-95M-i4096_CLcancer/config.json +25 -0
- gf-12L-95M-i4096_CLcancer/generation_config.json +5 -0
- gf-12L-95M-i4096_CLcancer/model.safetensors +3 -0
- gf-12L-95M-i4096_CLcancer/training_args.bin +3 -0
.gitattributes
CHANGED
@@ -26,4 +26,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
26 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
29 |
-
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
|
26 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
27 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
28 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
29 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
MANIFEST.in
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
include geneformer/
|
2 |
-
include geneformer/
|
3 |
-
include geneformer/
|
|
|
1 |
+
include geneformer/gene_median_dictionary_95m.pkl
|
2 |
+
include geneformer/token_dictionary_95m.pkl
|
3 |
+
include geneformer/gene_name_id_dict_95m.pkl
|
config.json
CHANGED
@@ -3,21 +3,22 @@
|
|
3 |
"BertForMaskedLM"
|
4 |
],
|
5 |
"attention_probs_dropout_prob": 0.02,
|
6 |
-
"
|
7 |
"hidden_act": "relu",
|
8 |
"hidden_dropout_prob": 0.02,
|
9 |
-
"hidden_size":
|
10 |
"initializer_range": 0.02,
|
11 |
-
"intermediate_size":
|
12 |
"layer_norm_eps": 1e-12,
|
13 |
-
"max_position_embeddings":
|
14 |
"model_type": "bert",
|
15 |
-
"num_attention_heads":
|
16 |
-
"num_hidden_layers":
|
17 |
"pad_token_id": 0,
|
18 |
"position_embedding_type": "absolute",
|
19 |
-
"
|
|
|
20 |
"type_vocab_size": 2,
|
21 |
"use_cache": true,
|
22 |
-
"vocab_size":
|
23 |
}
|
|
|
3 |
"BertForMaskedLM"
|
4 |
],
|
5 |
"attention_probs_dropout_prob": 0.02,
|
6 |
+
"classifier_dropout": null,
|
7 |
"hidden_act": "relu",
|
8 |
"hidden_dropout_prob": 0.02,
|
9 |
+
"hidden_size": 512,
|
10 |
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 1024,
|
12 |
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
"model_type": "bert",
|
15 |
+
"num_attention_heads": 8,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
"pad_token_id": 0,
|
18 |
"position_embedding_type": "absolute",
|
19 |
+
"torch_dtype": "float32",
|
20 |
+
"transformers_version": "4.37.1",
|
21 |
"type_vocab_size": 2,
|
22 |
"use_cache": true,
|
23 |
+
"vocab_size": 20275
|
24 |
}
|
fine_tuned_models/gf-12L-95M-i4096_MTLCellClassifier_CELLxGENE_240522/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.02,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"hidden_act": "relu",
|
8 |
+
"hidden_dropout_prob": 0.02,
|
9 |
+
"hidden_size": 512,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 1024,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 8,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"torch_dtype": "float32",
|
20 |
+
"transformers_version": "4.37.2",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 20275
|
24 |
+
}
|
fine_tuned_models/gf-12L-95M-i4096_MTLCellClassifier_CELLxGENE_240522/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07b28d8c7bb789d59755c42d32f6182cc04d2cf34aafaa6397aa50e4fdf1a9b4
|
3 |
+
size 152363342
|
fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/config.json
RENAMED
File without changes
|
fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/optimizer.pt
RENAMED
File without changes
|
fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/pytorch_model.bin
RENAMED
File without changes
|
fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/rng_state.pth
RENAMED
File without changes
|
fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/scheduler.pt
RENAMED
File without changes
|
fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/trainer_state.json
RENAMED
File without changes
|
fine_tuned_models/{geneformer-6L-30M_CellClassifier_cardiomyopathies_220224 β gf-6L-30M-i2048_CellClassifier_cardiomyopathies_220224}/training_args.bin
RENAMED
File without changes
|
geneformer/__init__.py
CHANGED
@@ -1,10 +1,12 @@
|
|
1 |
# ruff: noqa: F401
|
2 |
from pathlib import Path
|
|
|
|
|
3 |
|
4 |
-
GENE_MEDIAN_FILE = Path(__file__).parent / "
|
5 |
-
TOKEN_DICTIONARY_FILE = Path(__file__).parent / "
|
6 |
-
ENSEMBL_DICTIONARY_FILE = Path(__file__).parent / "
|
7 |
-
ENSEMBL_MAPPING_FILE = Path(__file__).parent / "
|
8 |
|
9 |
from . import (
|
10 |
collator_for_classification,
|
@@ -25,4 +27,7 @@ from .pretrainer import GeneformerPretrainer
|
|
25 |
from .tokenizer import TranscriptomeTokenizer
|
26 |
|
27 |
from . import classifier # noqa # isort:skip
|
28 |
-
from .classifier import Classifier # noqa # isort:skip
|
|
|
|
|
|
|
|
1 |
# ruff: noqa: F401
|
2 |
from pathlib import Path
|
3 |
+
import warnings
|
4 |
+
warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*") # noqa # isort:skip
|
5 |
|
6 |
+
GENE_MEDIAN_FILE = Path(__file__).parent / "gene_median_dictionary_gc95M.pkl"
|
7 |
+
TOKEN_DICTIONARY_FILE = Path(__file__).parent / "token_dictionary_gc95M.pkl"
|
8 |
+
ENSEMBL_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict_gc95M.pkl"
|
9 |
+
ENSEMBL_MAPPING_FILE = Path(__file__).parent / "ensembl_mapping_dict_gc95M.pkl"
|
10 |
|
11 |
from . import (
|
12 |
collator_for_classification,
|
|
|
27 |
from .tokenizer import TranscriptomeTokenizer
|
28 |
|
29 |
from . import classifier # noqa # isort:skip
|
30 |
+
from .classifier import Classifier # noqa # isort:skip
|
31 |
+
|
32 |
+
from . import mtl_classifier # noqa # isort:skip
|
33 |
+
from .mtl_classifier import MTLClassifier # noqa # isort:skip
|
geneformer/classifier.py
CHANGED
@@ -72,6 +72,7 @@ logger = logging.getLogger(__name__)
|
|
72 |
class Classifier:
|
73 |
valid_option_dict = {
|
74 |
"classifier": {"cell", "gene"},
|
|
|
75 |
"cell_state_dict": {None, dict},
|
76 |
"gene_class_dict": {None, dict},
|
77 |
"filter_data": {None, dict},
|
@@ -93,6 +94,7 @@ class Classifier:
|
|
93 |
def __init__(
|
94 |
self,
|
95 |
classifier=None,
|
|
|
96 |
cell_state_dict=None,
|
97 |
gene_class_dict=None,
|
98 |
filter_data=None,
|
@@ -118,6 +120,13 @@ class Classifier:
|
|
118 |
|
119 |
classifier : {"cell", "gene"}
|
120 |
| Whether to fine-tune a cell state or gene classifier.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
cell_state_dict : None, dict
|
122 |
| Cell states to fine-tune model to distinguish.
|
123 |
| Two-item dictionary with keys: state_key and states
|
@@ -191,6 +200,7 @@ class Classifier:
|
|
191 |
self.model_type = "CellClassifier"
|
192 |
elif self.classifier == "gene":
|
193 |
self.model_type = "GeneClassifier"
|
|
|
194 |
self.cell_state_dict = cell_state_dict
|
195 |
self.gene_class_dict = gene_class_dict
|
196 |
self.filter_data = filter_data
|
@@ -256,7 +266,7 @@ class Classifier:
|
|
256 |
f"Genes to classify {missing_genes} are not in token dictionary."
|
257 |
)
|
258 |
self.gene_class_dict = {
|
259 |
-
k: set([self.gene_token_dict.get(gene) for gene in v])
|
260 |
for k, v in self.gene_class_dict.items()
|
261 |
}
|
262 |
empty_classes = []
|
@@ -403,6 +413,15 @@ class Classifier:
|
|
403 |
"Column name 'labels' must be reserved for class IDs. Please rename column."
|
404 |
)
|
405 |
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
|
407 |
if self.classifier == "cell":
|
408 |
# remove cell states representing < rare_threshold of cells
|
@@ -505,6 +524,7 @@ class Classifier:
|
|
505 |
output_directory,
|
506 |
output_prefix,
|
507 |
save_eval_output=True,
|
|
|
508 |
):
|
509 |
"""
|
510 |
Train cell state or gene classifier using all data.
|
@@ -525,13 +545,20 @@ class Classifier:
|
|
525 |
save_eval_output : bool
|
526 |
| Whether to save cross-fold eval output
|
527 |
| Saves as pickle file of dictionary of eval metrics
|
528 |
-
|
|
|
|
|
|
|
529 |
**Output**
|
530 |
|
531 |
Returns trainer after fine-tuning with all data.
|
532 |
|
533 |
"""
|
534 |
|
|
|
|
|
|
|
|
|
535 |
##### Load data and prepare output directory #####
|
536 |
# load numerical id to class dictionary (id:class)
|
537 |
with open(id_class_dict_file, "rb") as f:
|
@@ -563,7 +590,7 @@ class Classifier:
|
|
563 |
)
|
564 |
assert len(targets) == len(labels)
|
565 |
data = cu.prep_gene_classifier_all_data(
|
566 |
-
data, targets, labels, self.max_ncells, self.nproc
|
567 |
)
|
568 |
|
569 |
trainer = self.train_classifier(
|
@@ -582,12 +609,15 @@ class Classifier:
|
|
582 |
split_id_dict=None,
|
583 |
attr_to_split=None,
|
584 |
attr_to_balance=None,
|
|
|
585 |
max_trials=100,
|
586 |
pval_threshold=0.1,
|
587 |
save_eval_output=True,
|
588 |
predict_eval=True,
|
589 |
predict_trainer=False,
|
590 |
n_hyperopt_trials=0,
|
|
|
|
|
591 |
):
|
592 |
"""
|
593 |
(Cross-)validate cell state or gene classifier.
|
@@ -622,6 +652,9 @@ class Classifier:
|
|
622 |
attr_to_balance : None, list
|
623 |
| List of attribute keys on which to balance data while splitting on attr_to_split
|
624 |
| e.g. ["age", "sex"] for balancing these characteristics while splitting by patient
|
|
|
|
|
|
|
625 |
max_trials : None, int
|
626 |
| Maximum number of trials of random splitting to try to achieve balanced other attribute
|
627 |
| If no split is found without significant (p < pval_threshold) differences in other attributes, will select best
|
@@ -640,11 +673,17 @@ class Classifier:
|
|
640 |
n_hyperopt_trials : int
|
641 |
| Number of trials to run for hyperparameter optimization
|
642 |
| If 0, will not optimize hyperparameters
|
|
|
|
|
643 |
"""
|
644 |
if self.num_crossval_splits == 0:
|
645 |
logger.error("num_crossval_splits must be 1 or 5 to validate.")
|
646 |
raise
|
647 |
-
|
|
|
|
|
|
|
|
|
648 |
# ensure number of genes in each class is > 5 if validating model
|
649 |
if self.classifier == "gene":
|
650 |
insuff_classes = [k for k, v in self.gene_class_dict.items() if len(v) < 5]
|
@@ -725,7 +764,7 @@ class Classifier:
|
|
725 |
else:
|
726 |
# 5-fold cross-validate
|
727 |
num_cells = len(data)
|
728 |
-
fifth_cells = num_cells * 0.2
|
729 |
num_eval = min((self.eval_size * num_cells), fifth_cells)
|
730 |
start = i * fifth_cells
|
731 |
end = start + num_eval
|
@@ -804,8 +843,19 @@ class Classifier:
|
|
804 |
self.max_ncells,
|
805 |
iteration_num,
|
806 |
self.nproc,
|
|
|
807 |
)
|
808 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
809 |
if self.oos_test_size > 0:
|
810 |
test_data = cu.prep_gene_classifier_split(
|
811 |
data,
|
@@ -817,7 +867,14 @@ class Classifier:
|
|
817 |
iteration_num,
|
818 |
self.nproc,
|
819 |
)
|
820 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
821 |
if n_hyperopt_trials == 0:
|
822 |
trainer = self.train_classifier(
|
823 |
model_directory,
|
@@ -966,7 +1023,7 @@ class Classifier:
|
|
966 |
subprocess.call(f"mkdir {output_directory}", shell=True)
|
967 |
|
968 |
##### Load model and training args #####
|
969 |
-
model = pu.load_model(self.model_type, num_classes, model_directory, "train")
|
970 |
def_training_args, def_freeze_layers = cu.get_default_train_args(
|
971 |
model, self.classifier, train_data, output_directory
|
972 |
)
|
@@ -990,14 +1047,14 @@ class Classifier:
|
|
990 |
##### Fine-tune the model #####
|
991 |
# define the data collator
|
992 |
if self.classifier == "cell":
|
993 |
-
data_collator = DataCollatorForCellClassification()
|
994 |
elif self.classifier == "gene":
|
995 |
-
data_collator = DataCollatorForGeneClassification()
|
996 |
|
997 |
# define function to initiate model
|
998 |
def model_init():
|
999 |
model = pu.load_model(
|
1000 |
-
self.model_type, num_classes, model_directory, "train"
|
1001 |
)
|
1002 |
|
1003 |
if self.freeze_layers is not None:
|
@@ -1009,7 +1066,8 @@ class Classifier:
|
|
1009 |
for param in module.parameters():
|
1010 |
param.requires_grad = False
|
1011 |
|
1012 |
-
|
|
|
1013 |
return model
|
1014 |
|
1015 |
# create the trainer
|
@@ -1122,7 +1180,7 @@ class Classifier:
|
|
1122 |
subprocess.call(f"mkdir {output_directory}", shell=True)
|
1123 |
|
1124 |
##### Load model and training args #####
|
1125 |
-
model = pu.load_model(self.model_type, num_classes, model_directory, "train")
|
1126 |
|
1127 |
def_training_args, def_freeze_layers = cu.get_default_train_args(
|
1128 |
model, self.classifier, train_data, output_directory
|
@@ -1152,9 +1210,9 @@ class Classifier:
|
|
1152 |
##### Fine-tune the model #####
|
1153 |
# define the data collator
|
1154 |
if self.classifier == "cell":
|
1155 |
-
data_collator = DataCollatorForCellClassification()
|
1156 |
elif self.classifier == "gene":
|
1157 |
-
data_collator = DataCollatorForGeneClassification()
|
1158 |
|
1159 |
# create the trainer
|
1160 |
trainer = Trainer(
|
@@ -1276,7 +1334,7 @@ class Classifier:
|
|
1276 |
test_data = pu.load_and_filter(None, self.nproc, test_data_file)
|
1277 |
|
1278 |
# load previously fine-tuned model
|
1279 |
-
model = pu.load_model(self.model_type, num_classes, model_directory, "eval")
|
1280 |
|
1281 |
# evaluate the model
|
1282 |
result = self.evaluate_model(
|
|
|
72 |
class Classifier:
|
73 |
valid_option_dict = {
|
74 |
"classifier": {"cell", "gene"},
|
75 |
+
"quantize": {bool, dict},
|
76 |
"cell_state_dict": {None, dict},
|
77 |
"gene_class_dict": {None, dict},
|
78 |
"filter_data": {None, dict},
|
|
|
94 |
def __init__(
|
95 |
self,
|
96 |
classifier=None,
|
97 |
+
quantize=False,
|
98 |
cell_state_dict=None,
|
99 |
gene_class_dict=None,
|
100 |
filter_data=None,
|
|
|
120 |
|
121 |
classifier : {"cell", "gene"}
|
122 |
| Whether to fine-tune a cell state or gene classifier.
|
123 |
+
quantize : bool, dict
|
124 |
+
| Whether to fine-tune a quantized model.
|
125 |
+
| If True and no config provided, will use default.
|
126 |
+
| Will use custom config if provided.
|
127 |
+
| Configs should be provided as dictionary of BitsAndBytesConfig (transformers) and LoraConfig (peft).
|
128 |
+
| For example: {"bnb_config": BitsAndBytesConfig(...),
|
129 |
+
| "peft_config": LoraConfig(...)}
|
130 |
cell_state_dict : None, dict
|
131 |
| Cell states to fine-tune model to distinguish.
|
132 |
| Two-item dictionary with keys: state_key and states
|
|
|
200 |
self.model_type = "CellClassifier"
|
201 |
elif self.classifier == "gene":
|
202 |
self.model_type = "GeneClassifier"
|
203 |
+
self.quantize = quantize
|
204 |
self.cell_state_dict = cell_state_dict
|
205 |
self.gene_class_dict = gene_class_dict
|
206 |
self.filter_data = filter_data
|
|
|
266 |
f"Genes to classify {missing_genes} are not in token dictionary."
|
267 |
)
|
268 |
self.gene_class_dict = {
|
269 |
+
k: list(set([self.gene_token_dict.get(gene) for gene in v]))
|
270 |
for k, v in self.gene_class_dict.items()
|
271 |
}
|
272 |
empty_classes = []
|
|
|
413 |
"Column name 'labels' must be reserved for class IDs. Please rename column."
|
414 |
)
|
415 |
raise
|
416 |
+
|
417 |
+
if (attr_to_split is not None) and (attr_to_balance is None):
|
418 |
+
logger.error(
|
419 |
+
"Splitting by attribute while balancing confounders requires both attr_to_split and attr_to_balance to be defined."
|
420 |
+
)
|
421 |
+
raise
|
422 |
+
|
423 |
+
if not isinstance(attr_to_balance, list):
|
424 |
+
attr_to_balance = [attr_to_balance]
|
425 |
|
426 |
if self.classifier == "cell":
|
427 |
# remove cell states representing < rare_threshold of cells
|
|
|
524 |
output_directory,
|
525 |
output_prefix,
|
526 |
save_eval_output=True,
|
527 |
+
gene_balance=False,
|
528 |
):
|
529 |
"""
|
530 |
Train cell state or gene classifier using all data.
|
|
|
545 |
save_eval_output : bool
|
546 |
| Whether to save cross-fold eval output
|
547 |
| Saves as pickle file of dictionary of eval metrics
|
548 |
+
gene_balance : None, bool
|
549 |
+
| Whether to automatically balance genes in training set.
|
550 |
+
| Only available for binary gene classifications.
|
551 |
+
|
552 |
**Output**
|
553 |
|
554 |
Returns trainer after fine-tuning with all data.
|
555 |
|
556 |
"""
|
557 |
|
558 |
+
if (gene_balance is True) and (len(self.gene_class_dict.values())!=2):
|
559 |
+
logger.error("Automatically balancing gene sets for training is only available for binary gene classifications.")
|
560 |
+
raise
|
561 |
+
|
562 |
##### Load data and prepare output directory #####
|
563 |
# load numerical id to class dictionary (id:class)
|
564 |
with open(id_class_dict_file, "rb") as f:
|
|
|
590 |
)
|
591 |
assert len(targets) == len(labels)
|
592 |
data = cu.prep_gene_classifier_all_data(
|
593 |
+
data, targets, labels, self.max_ncells, self.nproc, gene_balance
|
594 |
)
|
595 |
|
596 |
trainer = self.train_classifier(
|
|
|
609 |
split_id_dict=None,
|
610 |
attr_to_split=None,
|
611 |
attr_to_balance=None,
|
612 |
+
gene_balance=False,
|
613 |
max_trials=100,
|
614 |
pval_threshold=0.1,
|
615 |
save_eval_output=True,
|
616 |
predict_eval=True,
|
617 |
predict_trainer=False,
|
618 |
n_hyperopt_trials=0,
|
619 |
+
save_gene_split_datasets=True,
|
620 |
+
debug_gene_split_datasets=False,
|
621 |
):
|
622 |
"""
|
623 |
(Cross-)validate cell state or gene classifier.
|
|
|
652 |
attr_to_balance : None, list
|
653 |
| List of attribute keys on which to balance data while splitting on attr_to_split
|
654 |
| e.g. ["age", "sex"] for balancing these characteristics while splitting by patient
|
655 |
+
gene_balance : None, bool
|
656 |
+
| Whether to automatically balance genes in training set.
|
657 |
+
| Only available for binary gene classifications.
|
658 |
max_trials : None, int
|
659 |
| Maximum number of trials of random splitting to try to achieve balanced other attribute
|
660 |
| If no split is found without significant (p < pval_threshold) differences in other attributes, will select best
|
|
|
673 |
n_hyperopt_trials : int
|
674 |
| Number of trials to run for hyperparameter optimization
|
675 |
| If 0, will not optimize hyperparameters
|
676 |
+
save_gene_split_datasets : bool
|
677 |
+
| Whether or not to save train, valid, and test gene-labeled datasets
|
678 |
"""
|
679 |
if self.num_crossval_splits == 0:
|
680 |
logger.error("num_crossval_splits must be 1 or 5 to validate.")
|
681 |
raise
|
682 |
+
|
683 |
+
if (gene_balance is True) and (len(self.gene_class_dict.values())!=2):
|
684 |
+
logger.error("Automatically balancing gene sets for training is only available for binary gene classifications.")
|
685 |
+
raise
|
686 |
+
|
687 |
# ensure number of genes in each class is > 5 if validating model
|
688 |
if self.classifier == "gene":
|
689 |
insuff_classes = [k for k, v in self.gene_class_dict.items() if len(v) < 5]
|
|
|
764 |
else:
|
765 |
# 5-fold cross-validate
|
766 |
num_cells = len(data)
|
767 |
+
fifth_cells = int(np.floor(num_cells * 0.2))
|
768 |
num_eval = min((self.eval_size * num_cells), fifth_cells)
|
769 |
start = i * fifth_cells
|
770 |
end = start + num_eval
|
|
|
843 |
self.max_ncells,
|
844 |
iteration_num,
|
845 |
self.nproc,
|
846 |
+
gene_balance,
|
847 |
)
|
848 |
+
|
849 |
+
if save_gene_split_datasets is True:
|
850 |
+
for split_name in ["train", "valid"]:
|
851 |
+
labeled_dataset_output_path = (
|
852 |
+
Path(output_dir) / f"{output_prefix}_{split_name}_gene_labeled_ksplit{iteration_num}"
|
853 |
+
).with_suffix(".dataset")
|
854 |
+
if split_name == "train":
|
855 |
+
train_data.save_to_disk(str(labeled_dataset_output_path))
|
856 |
+
elif split_name == "valid":
|
857 |
+
eval_data.save_to_disk(str(labeled_dataset_output_path))
|
858 |
+
|
859 |
if self.oos_test_size > 0:
|
860 |
test_data = cu.prep_gene_classifier_split(
|
861 |
data,
|
|
|
867 |
iteration_num,
|
868 |
self.nproc,
|
869 |
)
|
870 |
+
if save_gene_split_datasets is True:
|
871 |
+
test_labeled_dataset_output_path = (
|
872 |
+
Path(output_dir) / f"{output_prefix}_test_gene_labeled_ksplit{iteration_num}"
|
873 |
+
).with_suffix(".dataset")
|
874 |
+
test_data.save_to_disk(str(test_labeled_dataset_output_path))
|
875 |
+
if debug_gene_split_datasets is True:
|
876 |
+
logger.error("Exiting after saving gene split datasets given debug_gene_split_datasets = True.")
|
877 |
+
raise
|
878 |
if n_hyperopt_trials == 0:
|
879 |
trainer = self.train_classifier(
|
880 |
model_directory,
|
|
|
1023 |
subprocess.call(f"mkdir {output_directory}", shell=True)
|
1024 |
|
1025 |
##### Load model and training args #####
|
1026 |
+
model = pu.load_model(self.model_type, num_classes, model_directory, "train", quantize=self.quantize)
|
1027 |
def_training_args, def_freeze_layers = cu.get_default_train_args(
|
1028 |
model, self.classifier, train_data, output_directory
|
1029 |
)
|
|
|
1047 |
##### Fine-tune the model #####
|
1048 |
# define the data collator
|
1049 |
if self.classifier == "cell":
|
1050 |
+
data_collator = DataCollatorForCellClassification(token_dictionary=self.token_dictionary)
|
1051 |
elif self.classifier == "gene":
|
1052 |
+
data_collator = DataCollatorForGeneClassification(token_dictionary=self.token_dictionary)
|
1053 |
|
1054 |
# define function to initiate model
|
1055 |
def model_init():
|
1056 |
model = pu.load_model(
|
1057 |
+
self.model_type, num_classes, model_directory, "train", quantize=self.quantize
|
1058 |
)
|
1059 |
|
1060 |
if self.freeze_layers is not None:
|
|
|
1066 |
for param in module.parameters():
|
1067 |
param.requires_grad = False
|
1068 |
|
1069 |
+
if self.quantize is False:
|
1070 |
+
model = model.to("cuda:0")
|
1071 |
return model
|
1072 |
|
1073 |
# create the trainer
|
|
|
1180 |
subprocess.call(f"mkdir {output_directory}", shell=True)
|
1181 |
|
1182 |
##### Load model and training args #####
|
1183 |
+
model = pu.load_model(self.model_type, num_classes, model_directory, "train", quantize=self.quantize)
|
1184 |
|
1185 |
def_training_args, def_freeze_layers = cu.get_default_train_args(
|
1186 |
model, self.classifier, train_data, output_directory
|
|
|
1210 |
##### Fine-tune the model #####
|
1211 |
# define the data collator
|
1212 |
if self.classifier == "cell":
|
1213 |
+
data_collator = DataCollatorForCellClassification(token_dictionary=self.token_dictionary)
|
1214 |
elif self.classifier == "gene":
|
1215 |
+
data_collator = DataCollatorForGeneClassification(token_dictionary=self.token_dictionary)
|
1216 |
|
1217 |
# create the trainer
|
1218 |
trainer = Trainer(
|
|
|
1334 |
test_data = pu.load_and_filter(None, self.nproc, test_data_file)
|
1335 |
|
1336 |
# load previously fine-tuned model
|
1337 |
+
model = pu.load_model(self.model_type, num_classes, model_directory, "eval", quantize=self.quantize)
|
1338 |
|
1339 |
# evaluate the model
|
1340 |
result = self.evaluate_model(
|
geneformer/classifier_utils.py
CHANGED
@@ -137,21 +137,22 @@ def label_gene_classes(example, class_id_dict, gene_class_dict):
|
|
137 |
|
138 |
|
139 |
def prep_gene_classifier_train_eval_split(
|
140 |
-
data, targets, labels, train_index, eval_index, max_ncells, iteration_num, num_proc
|
141 |
):
|
142 |
# generate cross-validation splits
|
143 |
train_data = prep_gene_classifier_split(
|
144 |
-
data, targets, labels, train_index, "train", max_ncells, iteration_num, num_proc
|
145 |
)
|
146 |
eval_data = prep_gene_classifier_split(
|
147 |
-
data, targets, labels, eval_index, "eval", max_ncells, iteration_num, num_proc
|
148 |
)
|
149 |
return train_data, eval_data
|
150 |
|
151 |
|
152 |
def prep_gene_classifier_split(
|
153 |
-
data, targets, labels, index, subset_name, max_ncells, iteration_num, num_proc
|
154 |
):
|
|
|
155 |
# generate cross-validation splits
|
156 |
targets = np.array(targets)
|
157 |
labels = np.array(labels)
|
@@ -172,6 +173,10 @@ def prep_gene_classifier_split(
|
|
172 |
f"Filtered {round((1-len(subset_data)/len(data))*100)}%; {len(subset_data)} remain\n"
|
173 |
)
|
174 |
|
|
|
|
|
|
|
|
|
175 |
# subsample to max_ncells
|
176 |
subset_data = downsample_and_shuffle(subset_data, max_ncells, None, None)
|
177 |
|
@@ -187,7 +192,7 @@ def prep_gene_classifier_split(
|
|
187 |
return subset_data
|
188 |
|
189 |
|
190 |
-
def prep_gene_classifier_all_data(data, targets, labels, max_ncells, num_proc):
|
191 |
targets = np.array(targets)
|
192 |
labels = np.array(labels)
|
193 |
label_dict_train = dict(zip(targets, labels))
|
@@ -205,6 +210,9 @@ def prep_gene_classifier_all_data(data, targets, labels, max_ncells, num_proc):
|
|
205 |
f"Filtered {round((1-len(train_data)/len(data))*100)}%; {len(train_data)} remain\n"
|
206 |
)
|
207 |
|
|
|
|
|
|
|
208 |
# subsample to max_ncells
|
209 |
train_data = downsample_and_shuffle(train_data, max_ncells, None, None)
|
210 |
|
@@ -220,6 +228,110 @@ def prep_gene_classifier_all_data(data, targets, labels, max_ncells, num_proc):
|
|
220 |
return train_data
|
221 |
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
def balance_attr_splits(
|
224 |
data,
|
225 |
attr_to_split,
|
|
|
137 |
|
138 |
|
139 |
def prep_gene_classifier_train_eval_split(
|
140 |
+
data, targets, labels, train_index, eval_index, max_ncells, iteration_num, num_proc, balance=False
|
141 |
):
|
142 |
# generate cross-validation splits
|
143 |
train_data = prep_gene_classifier_split(
|
144 |
+
data, targets, labels, train_index, "train", max_ncells, iteration_num, num_proc, balance
|
145 |
)
|
146 |
eval_data = prep_gene_classifier_split(
|
147 |
+
data, targets, labels, eval_index, "eval", max_ncells, iteration_num, num_proc, balance
|
148 |
)
|
149 |
return train_data, eval_data
|
150 |
|
151 |
|
152 |
def prep_gene_classifier_split(
|
153 |
+
data, targets, labels, index, subset_name, max_ncells, iteration_num, num_proc, balance=False
|
154 |
):
|
155 |
+
|
156 |
# generate cross-validation splits
|
157 |
targets = np.array(targets)
|
158 |
labels = np.array(labels)
|
|
|
173 |
f"Filtered {round((1-len(subset_data)/len(data))*100)}%; {len(subset_data)} remain\n"
|
174 |
)
|
175 |
|
176 |
+
# balance gene subsets if train
|
177 |
+
if (subset_name == "train") and (balance is True):
|
178 |
+
subset_data, label_dict_subset = balance_gene_split(subset_data, label_dict_subset, num_proc)
|
179 |
+
|
180 |
# subsample to max_ncells
|
181 |
subset_data = downsample_and_shuffle(subset_data, max_ncells, None, None)
|
182 |
|
|
|
192 |
return subset_data
|
193 |
|
194 |
|
195 |
+
def prep_gene_classifier_all_data(data, targets, labels, max_ncells, num_proc, balance=False):
|
196 |
targets = np.array(targets)
|
197 |
labels = np.array(labels)
|
198 |
label_dict_train = dict(zip(targets, labels))
|
|
|
210 |
f"Filtered {round((1-len(train_data)/len(data))*100)}%; {len(train_data)} remain\n"
|
211 |
)
|
212 |
|
213 |
+
if balance is True:
|
214 |
+
train_data, label_dict_train = balance_gene_split(train_data, label_dict_train, num_proc)
|
215 |
+
|
216 |
# subsample to max_ncells
|
217 |
train_data = downsample_and_shuffle(train_data, max_ncells, None, None)
|
218 |
|
|
|
228 |
return train_data
|
229 |
|
230 |
|
231 |
+
def balance_gene_split(subset_data, label_dict_subset, num_proc):
|
232 |
+
# count occurrence of genes in each label category
|
233 |
+
label0_counts, label1_counts = count_genes_for_balancing(subset_data, label_dict_subset, num_proc)
|
234 |
+
label_ratio_0to1 = label0_counts/label1_counts
|
235 |
+
|
236 |
+
if 8/10 <= label_ratio_0to1 <= 10/8:
|
237 |
+
# gene sets already balanced
|
238 |
+
logger.info(
|
239 |
+
"Gene sets were already balanced within 0.8-1.25 fold and did not require balancing.\n"
|
240 |
+
)
|
241 |
+
return subset_data, label_dict_subset
|
242 |
+
else:
|
243 |
+
label_ratio_0to1_orig = label_ratio_0to1+0
|
244 |
+
label_dict_subset_orig = label_dict_subset.copy()
|
245 |
+
# balance gene sets
|
246 |
+
max_ntrials = 25
|
247 |
+
boost = 1
|
248 |
+
if label_ratio_0to1 > 10/8:
|
249 |
+
# downsample label 0
|
250 |
+
for i in range(max_ntrials):
|
251 |
+
label0 = 0
|
252 |
+
label0_genes = [k for k,v in label_dict_subset.items() if v == label0]
|
253 |
+
label0_ngenes = len(label0_genes)
|
254 |
+
label0_nremove = max(1,int(np.floor(label0_ngenes - label0_ngenes/(label_ratio_0to1*boost))))
|
255 |
+
random.seed(i)
|
256 |
+
label0_remove_genes = random.sample(label0_genes, label0_nremove)
|
257 |
+
label_dict_subset_new = {k:v for k,v in label_dict_subset.items() if k not in label0_remove_genes}
|
258 |
+
label0_counts, label1_counts = count_genes_for_balancing(subset_data, label_dict_subset_new, num_proc)
|
259 |
+
label_ratio_0to1 = label0_counts/label1_counts
|
260 |
+
if 8/10 <= label_ratio_0to1 <= 10/8:
|
261 |
+
# if gene sets now balanced, return new filtered data and new label_dict_subset
|
262 |
+
return filter_data_balanced_genes(subset_data, label_dict_subset_new, num_proc)
|
263 |
+
elif label_ratio_0to1 > 10/8:
|
264 |
+
boost = boost*1.1
|
265 |
+
elif label_ratio_0to1 < 8/10:
|
266 |
+
boost = boost*0.9
|
267 |
+
else:
|
268 |
+
# downsample label 1
|
269 |
+
for i in range(max_ntrials):
|
270 |
+
label1 = 1
|
271 |
+
label1_genes = [k for k,v in label_dict_subset.items() if v == label1]
|
272 |
+
label1_ngenes = len(label1_genes)
|
273 |
+
label1_nremove = max(1,int(np.floor(label1_ngenes - label1_ngenes/((1/label_ratio_0to1)*boost))))
|
274 |
+
random.seed(i)
|
275 |
+
label1_remove_genes = random.sample(label1_genes, label1_nremove)
|
276 |
+
label_dict_subset_new = {k:v for k,v in label_dict_subset.items() if k not in label1_remove_genes}
|
277 |
+
label0_counts, label1_counts = count_genes_for_balancing(subset_data, label_dict_subset_new, num_proc)
|
278 |
+
label_ratio_0to1 = label0_counts/label1_counts
|
279 |
+
if 8/10 <= label_ratio_0to1 <= 10/8:
|
280 |
+
# if gene sets now balanced, return new filtered data and new label_dict_subset
|
281 |
+
return filter_data_balanced_genes(subset_data, label_dict_subset_new, num_proc)
|
282 |
+
elif label_ratio_0to1 < 8/10:
|
283 |
+
boost = boost*1.1
|
284 |
+
elif label_ratio_0to1 > 10/8:
|
285 |
+
boost = boost*0.9
|
286 |
+
|
287 |
+
assert i+1 == max_ntrials
|
288 |
+
if (label_ratio_0to1 <= label_ratio_0to1_orig < 8/10) or (10/8 > label_ratio_0to1_orig >= label_ratio_0to1):
|
289 |
+
label_ratio_0to1 = label_ratio_0to1_orig
|
290 |
+
label_dict_subset_new = label_dict_subset_orig
|
291 |
+
logger.warning(
|
292 |
+
f"Gene sets were not able to be balanced within 0.8-1.25 fold after {max_ntrials} trials. Imbalance level: {label_ratio_0to1}\n"
|
293 |
+
)
|
294 |
+
return filter_data_balanced_genes(subset_data, label_dict_subset_new, num_proc)
|
295 |
+
|
296 |
+
|
297 |
+
def count_genes_for_balancing(subset_data, label_dict_subset, num_proc):
|
298 |
+
def count_targets(example):
|
299 |
+
labels = [
|
300 |
+
label_dict_subset.get(token_id, -100) for token_id in example["input_ids"]
|
301 |
+
]
|
302 |
+
counter_labels = Counter(labels)
|
303 |
+
# get count of labels 0 or 1, or if absent, return 0
|
304 |
+
example["labels_counts"] = [counter_labels.get(0,0),counter_labels.get(1,0)]
|
305 |
+
return example
|
306 |
+
|
307 |
+
subset_data = subset_data.map(count_targets, num_proc=num_proc)
|
308 |
+
|
309 |
+
label0_counts = sum([counts[0] for counts in subset_data["labels_counts"]])
|
310 |
+
label1_counts = sum([counts[1] for counts in subset_data["labels_counts"]])
|
311 |
+
|
312 |
+
subset_data = subset_data.remove_columns("labels_counts")
|
313 |
+
|
314 |
+
return label0_counts, label1_counts
|
315 |
+
|
316 |
+
|
317 |
+
def filter_data_balanced_genes(subset_data, label_dict_subset, num_proc):
|
318 |
+
# function to filter by whether contains labels
|
319 |
+
def if_contains_subset_label(example):
|
320 |
+
a = list(label_dict_subset.keys())
|
321 |
+
b = example["input_ids"]
|
322 |
+
return not set(a).isdisjoint(b)
|
323 |
+
|
324 |
+
# filter dataset for examples containing classes for this split
|
325 |
+
logger.info("Filtering data for balanced genes")
|
326 |
+
subset_data_len_orig = len(subset_data)
|
327 |
+
subset_data = subset_data.filter(if_contains_subset_label, num_proc=num_proc)
|
328 |
+
logger.info(
|
329 |
+
f"Filtered {round((1-len(subset_data)/subset_data_len_orig)*100)}%; {len(subset_data)} remain\n"
|
330 |
+
)
|
331 |
+
|
332 |
+
return subset_data, label_dict_subset
|
333 |
+
|
334 |
+
|
335 |
def balance_attr_splits(
|
336 |
data,
|
337 |
attr_to_split,
|
geneformer/collator_for_classification.py
CHANGED
@@ -18,12 +18,6 @@ from transformers import (
|
|
18 |
from transformers.utils import is_tf_available, is_torch_available, logging, to_py_obj
|
19 |
from transformers.utils.generic import _is_tensorflow, _is_torch
|
20 |
|
21 |
-
from . import TOKEN_DICTIONARY_FILE
|
22 |
-
|
23 |
-
# load token dictionary (Ensembl IDs:token)
|
24 |
-
with open(TOKEN_DICTIONARY_FILE, "rb") as f:
|
25 |
-
token_dictionary = pickle.load(f)
|
26 |
-
|
27 |
EncodedInput = List[int]
|
28 |
logger = logging.get_logger(__name__)
|
29 |
VERY_LARGE_INTEGER = int(
|
@@ -85,16 +79,18 @@ class TensorType(ExplicitEnum):
|
|
85 |
|
86 |
|
87 |
class PrecollatorForGeneAndCellClassification(SpecialTokensMixin):
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
token_dictionary.get("<mask>")
|
95 |
-
token_dictionary.get("<pad>")
|
96 |
-
|
97 |
-
|
|
|
|
|
98 |
|
99 |
def _get_padding_truncation_strategies(
|
100 |
self, padding=True, truncation=False, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
|
@@ -550,8 +546,7 @@ class DataCollatorForGeneClassification(DataCollatorForTokenClassification):
|
|
550 |
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
|
551 |
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
552 |
"""
|
553 |
-
|
554 |
-
tokenizer = PrecollatorForGeneAndCellClassification()
|
555 |
class_type = "gene"
|
556 |
padding: Union[bool, str, PaddingStrategy] = True
|
557 |
max_length: Optional[int] = None
|
@@ -559,8 +554,9 @@ class DataCollatorForGeneClassification(DataCollatorForTokenClassification):
|
|
559 |
label_pad_token_id: int = -100
|
560 |
|
561 |
def __init__(self, *args, **kwargs) -> None:
|
|
|
562 |
super().__init__(
|
563 |
-
tokenizer=self.
|
564 |
padding=self.padding,
|
565 |
max_length=self.max_length,
|
566 |
pad_to_multiple_of=self.pad_to_multiple_of,
|
|
|
18 |
from transformers.utils import is_tf_available, is_torch_available, logging, to_py_obj
|
19 |
from transformers.utils.generic import _is_tensorflow, _is_torch
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
EncodedInput = List[int]
|
22 |
logger = logging.get_logger(__name__)
|
23 |
VERY_LARGE_INTEGER = int(
|
|
|
79 |
|
80 |
|
81 |
class PrecollatorForGeneAndCellClassification(SpecialTokensMixin):
|
82 |
+
def __init__(self, *args, **kwargs) -> None:
|
83 |
+
super().__init__(mask_token="<mask>", pad_token="<pad>")
|
84 |
+
|
85 |
+
self.token_dictionary = kwargs.get("token_dictionary")
|
86 |
+
self.padding_side = "right"
|
87 |
+
self.model_input_names = ["input_ids"]
|
88 |
+
self.mask_token_id = self.token_dictionary.get("<mask>")
|
89 |
+
self.pad_token_id = self.token_dictionary.get("<pad>")
|
90 |
+
self.all_special_ids = [
|
91 |
+
self.token_dictionary.get("<mask>"),
|
92 |
+
self.token_dictionary.get("<pad>")
|
93 |
+
]
|
94 |
|
95 |
def _get_padding_truncation_strategies(
|
96 |
self, padding=True, truncation=False, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs
|
|
|
546 |
label_pad_token_id (:obj:`int`, `optional`, defaults to -100):
|
547 |
The id to use when padding the labels (-100 will be automatically ignore by PyTorch loss functions).
|
548 |
"""
|
549 |
+
|
|
|
550 |
class_type = "gene"
|
551 |
padding: Union[bool, str, PaddingStrategy] = True
|
552 |
max_length: Optional[int] = None
|
|
|
554 |
label_pad_token_id: int = -100
|
555 |
|
556 |
def __init__(self, *args, **kwargs) -> None:
|
557 |
+
self.token_dictionary = kwargs.pop("token_dictionary")
|
558 |
super().__init__(
|
559 |
+
tokenizer=PrecollatorForGeneAndCellClassification(token_dictionary=self.token_dictionary),
|
560 |
padding=self.padding,
|
561 |
max_length=self.max_length,
|
562 |
pad_to_multiple_of=self.pad_to_multiple_of,
|
geneformer/emb_extractor.py
CHANGED
@@ -286,12 +286,20 @@ def plot_umap(embs_df, emb_dims, label, output_file, kwargs_dict, seed=0):
|
|
286 |
sc.tl.umap(adata, random_state=seed)
|
287 |
sns.set(rc={"figure.figsize": (10, 10)}, font_scale=2.3)
|
288 |
sns.set_style("white")
|
289 |
-
default_kwargs_dict = {"
|
290 |
if kwargs_dict is not None:
|
291 |
default_kwargs_dict.update(kwargs_dict)
|
292 |
|
293 |
-
|
294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
plt.savefig(output_file, bbox_inches="tight")
|
296 |
|
297 |
|
@@ -470,7 +478,6 @@ class EmbExtractor:
|
|
470 |
... emb_mode="cell",
|
471 |
... filter_data={"cell_type":["cardiomyocyte"]},
|
472 |
... max_ncells=1000,
|
473 |
-
... max_ncells_to_plot=1000,
|
474 |
... emb_layer=-1,
|
475 |
... emb_label=["disease", "cell_type"],
|
476 |
... labels_to_plot=["disease", "cell_type"])
|
@@ -783,15 +790,15 @@ class EmbExtractor:
|
|
783 |
logger.error("Plotting UMAP requires 'labels_to_plot'. ")
|
784 |
raise
|
785 |
|
786 |
-
if max_ncells_to_plot
|
787 |
-
max_ncells_to_plot
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
|
796 |
if self.emb_label is None:
|
797 |
label_len = 0
|
|
|
286 |
sc.tl.umap(adata, random_state=seed)
|
287 |
sns.set(rc={"figure.figsize": (10, 10)}, font_scale=2.3)
|
288 |
sns.set_style("white")
|
289 |
+
default_kwargs_dict = {"size": 200}
|
290 |
if kwargs_dict is not None:
|
291 |
default_kwargs_dict.update(kwargs_dict)
|
292 |
|
293 |
+
cats = set(embs_df[label])
|
294 |
+
|
295 |
+
with plt.rc_context():
|
296 |
+
ax = sc.pl.umap(adata, color=label, show=False, **default_kwargs_dict)
|
297 |
+
ax.legend(markerscale=2,
|
298 |
+
frameon=False,
|
299 |
+
loc="center left",
|
300 |
+
bbox_to_anchor=(1, 0.5),
|
301 |
+
ncol=(1 if len(cats) <= 14 else 2 if len(cats) <= 30 else 3))
|
302 |
+
plt.show()
|
303 |
plt.savefig(output_file, bbox_inches="tight")
|
304 |
|
305 |
|
|
|
478 |
... emb_mode="cell",
|
479 |
... filter_data={"cell_type":["cardiomyocyte"]},
|
480 |
... max_ncells=1000,
|
|
|
481 |
... emb_layer=-1,
|
482 |
... emb_label=["disease", "cell_type"],
|
483 |
... labels_to_plot=["disease", "cell_type"])
|
|
|
790 |
logger.error("Plotting UMAP requires 'labels_to_plot'. ")
|
791 |
raise
|
792 |
|
793 |
+
if max_ncells_to_plot is not None:
|
794 |
+
if max_ncells_to_plot > self.max_ncells:
|
795 |
+
max_ncells_to_plot = self.max_ncells
|
796 |
+
logger.warning(
|
797 |
+
"max_ncells_to_plot must be <= max_ncells. "
|
798 |
+
f"Changing max_ncells_to_plot to {self.max_ncells}."
|
799 |
+
)
|
800 |
+
elif max_ncells_to_plot < self.max_ncells:
|
801 |
+
embs = embs.sample(max_ncells_to_plot, axis=0)
|
802 |
|
803 |
if self.emb_label is None:
|
804 |
label_len = 0
|
geneformer/gene_dictionaries_30m/gene_median_dictionary_gc30M.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3b589bb5ec75040d05fc44dd6bf0184cf87f3c362cf158d196a6ed3b7fe5f39
|
3 |
+
size 940965
|
geneformer/{gene_name_id_dict.pkl β gene_dictionaries_30m/gene_name_id_dict_gc30M.pkl}
RENAMED
File without changes
|
geneformer/gene_dictionaries_30m/token_dictionary_gc30M.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab9dc40973fa5224d77b793e2fd114cacf3d08423ed9c4c49caf0ba9c7f218f1
|
3 |
+
size 788424
|
geneformer/gene_median_dictionary.pkl
DELETED
Binary file (941 kB)
|
|
geneformer/in_silico_perturber.py
CHANGED
@@ -63,7 +63,7 @@ class InSilicoPerturber:
|
|
63 |
"anchor_gene": {None, str},
|
64 |
"model_type": {"Pretrained", "GeneClassifier", "CellClassifier"},
|
65 |
"num_classes": {int},
|
66 |
-
"emb_mode": {"cell", "cell_and_gene"},
|
67 |
"cell_emb_style": {"mean_pool"},
|
68 |
"filter_data": {None, dict},
|
69 |
"cell_states_to_model": {None, dict},
|
@@ -71,6 +71,7 @@ class InSilicoPerturber:
|
|
71 |
"max_ncells": {None, int},
|
72 |
"cell_inds_to_perturb": {"all", dict},
|
73 |
"emb_layer": {-1, 0},
|
|
|
74 |
"forward_batch_size": {int},
|
75 |
"nproc": {int},
|
76 |
}
|
@@ -94,7 +95,8 @@ class InSilicoPerturber:
|
|
94 |
emb_layer=-1,
|
95 |
forward_batch_size=100,
|
96 |
nproc=4,
|
97 |
-
token_dictionary_file=
|
|
|
98 |
):
|
99 |
"""
|
100 |
Initialize in silico perturber.
|
@@ -129,16 +131,16 @@ class InSilicoPerturber:
|
|
129 |
| ENSEMBL ID of gene to use as anchor in combination perturbations.
|
130 |
| For example, if combos=1 and anchor_gene="ENSG00000148400":
|
131 |
| anchor gene will be perturbed in combination with each other gene.
|
132 |
-
model_type : {"Pretrained", "GeneClassifier", "CellClassifier"}
|
133 |
-
| Whether model is the pretrained Geneformer or a fine-tuned gene or cell classifier.
|
134 |
num_classes : int
|
135 |
| If model is a gene or cell classifier, specify number of classes it was trained to classify.
|
136 |
| For the pretrained Geneformer model, number of classes is 0 as it is not a classifier.
|
137 |
-
emb_mode : {"cell", "cell_and_gene"}
|
138 |
-
| Whether to output impact of perturbation on cell and/or gene embeddings.
|
139 |
| Gene embedding shifts only available as compared to original cell, not comparing to goal state.
|
140 |
cell_emb_style : "mean_pool"
|
141 |
-
| Method for summarizing cell embeddings.
|
142 |
| Currently only option is mean pooling of gene embeddings for given cell.
|
143 |
filter_data : None, dict
|
144 |
| Default is to use all input data for in silico perturbation study.
|
@@ -183,6 +185,8 @@ class InSilicoPerturber:
|
|
183 |
| Number of CPU processes to use.
|
184 |
token_dictionary_file : Path
|
185 |
| Path to pickle file containing token dictionary (Ensembl ID:token).
|
|
|
|
|
186 |
"""
|
187 |
try:
|
188 |
set_start_method("spawn")
|
@@ -219,15 +223,31 @@ class InSilicoPerturber:
|
|
219 |
self.emb_layer = emb_layer
|
220 |
self.forward_batch_size = forward_batch_size
|
221 |
self.nproc = nproc
|
|
|
|
|
222 |
|
223 |
self.validate_options()
|
224 |
|
225 |
# load token dictionary (Ensembl IDs:token)
|
|
|
|
|
226 |
with open(token_dictionary_file, "rb") as f:
|
227 |
self.gene_token_dict = pickle.load(f)
|
228 |
self.token_gene_dict = {v: k for k, v in self.gene_token_dict.items()}
|
229 |
|
230 |
self.pad_token_id = self.gene_token_dict.get("<pad>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
if self.anchor_gene is None:
|
233 |
self.anchor_token = None
|
@@ -285,7 +305,7 @@ class InSilicoPerturber:
|
|
285 |
continue
|
286 |
valid_type = False
|
287 |
for option in valid_options:
|
288 |
-
if (option in [bool, int, list, dict]) and isinstance(
|
289 |
attr_value, option
|
290 |
):
|
291 |
valid_type = True
|
@@ -426,22 +446,46 @@ class InSilicoPerturber:
|
|
426 |
self.max_len = pu.get_model_input_size(model)
|
427 |
layer_to_quant = pu.quant_layers(model) + self.emb_layer
|
428 |
|
429 |
-
|
430 |
### filter input data ###
|
431 |
# general filtering of input data based on filter_data argument
|
432 |
filtered_input_data = pu.load_and_filter(
|
433 |
self.filter_data, self.nproc, input_data_file
|
434 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
435 |
filtered_input_data = self.apply_additional_filters(filtered_input_data)
|
436 |
|
437 |
if self.perturb_group is True:
|
438 |
-
self.
|
439 |
-
|
440 |
-
|
|
|
|
|
|
|
|
|
|
|
441 |
else:
|
442 |
-
self.
|
443 |
-
|
444 |
-
|
|
|
|
|
|
|
|
|
|
|
445 |
|
446 |
def apply_additional_filters(self, filtered_input_data):
|
447 |
# additional filtering of input data dependent on isp mode
|
@@ -486,6 +530,7 @@ class InSilicoPerturber:
|
|
486 |
layer_to_quant: int,
|
487 |
output_path_prefix: str,
|
488 |
):
|
|
|
489 |
def make_group_perturbation_batch(example):
|
490 |
example_input_ids = example["input_ids"]
|
491 |
example["tokens_to_perturb"] = self.tokens_to_perturb
|
@@ -504,7 +549,7 @@ class InSilicoPerturber:
|
|
504 |
if self.perturb_type == "delete":
|
505 |
example = pu.delete_indices(example)
|
506 |
elif self.perturb_type == "overexpress":
|
507 |
-
example = pu.overexpress_tokens(example, self.max_len)
|
508 |
example["n_overflow"] = pu.calc_n_overflow(
|
509 |
self.max_len,
|
510 |
example["length"],
|
@@ -678,8 +723,6 @@ class InSilicoPerturber:
|
|
678 |
cos_sims_dict = self.update_perturbation_dictionary(
|
679 |
cos_sims_dict,
|
680 |
cos_sims_data,
|
681 |
-
filtered_input_data,
|
682 |
-
indices_to_perturb,
|
683 |
gene_list,
|
684 |
)
|
685 |
else:
|
@@ -688,8 +731,6 @@ class InSilicoPerturber:
|
|
688 |
cos_sims_dict[state] = self.update_perturbation_dictionary(
|
689 |
cos_sims_dict[state],
|
690 |
cos_sims_data[state],
|
691 |
-
filtered_input_data,
|
692 |
-
indices_to_perturb,
|
693 |
gene_list,
|
694 |
)
|
695 |
del minibatch
|
@@ -711,6 +752,256 @@ class InSilicoPerturber:
|
|
711 |
f"{output_path_prefix}_gene_embs_dict_{self.tokens_to_perturb}",
|
712 |
)
|
713 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
714 |
def isp_perturb_all(
|
715 |
self,
|
716 |
model,
|
@@ -729,8 +1020,10 @@ class InSilicoPerturber:
|
|
729 |
|
730 |
if self.emb_mode == "cell_and_gene":
|
731 |
stored_gene_embs_dict = defaultdict(list)
|
732 |
-
|
733 |
-
|
|
|
|
|
734 |
full_original_emb = get_embs(
|
735 |
model,
|
736 |
example_cell,
|
@@ -738,18 +1031,33 @@ class InSilicoPerturber:
|
|
738 |
layer_to_quant,
|
739 |
self.pad_token_id,
|
740 |
self.forward_batch_size,
|
741 |
-
|
742 |
summary_stat=None,
|
743 |
silent=True,
|
744 |
)
|
745 |
-
|
|
|
|
|
|
|
|
|
|
|
746 |
# gene_list is used to assign cos sims back to genes
|
747 |
-
# need to remove the anchor gene
|
748 |
gene_list = example_cell["input_ids"][0][:]
|
|
|
749 |
if self.anchor_token is not None:
|
750 |
for token in self.anchor_token:
|
751 |
gene_list.remove(token)
|
752 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
753 |
perturbation_batch, indices_to_perturb = pu.make_perturbation_batch(
|
754 |
example_cell,
|
755 |
self.perturb_type,
|
@@ -759,148 +1067,430 @@ class InSilicoPerturber:
|
|
759 |
self.nproc,
|
760 |
)
|
761 |
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
self.forward_batch_size,
|
769 |
-
token_gene_dict=self.token_gene_dict,
|
770 |
-
summary_stat=None,
|
771 |
-
silent=True,
|
772 |
-
)
|
773 |
-
|
774 |
-
num_inds_perturbed = 1 + self.combos
|
775 |
-
# need to remove overexpressed gene to quantify cosine shifts
|
776 |
-
if self.perturb_type == "overexpress":
|
777 |
-
perturbation_emb = full_perturbation_emb[:, num_inds_perturbed:, :]
|
778 |
-
gene_list = gene_list[
|
779 |
-
num_inds_perturbed:
|
780 |
-
] # index 0 is not overexpressed
|
781 |
-
|
782 |
-
elif self.perturb_type == "delete":
|
783 |
-
perturbation_emb = full_perturbation_emb
|
784 |
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
emb_mode="gene",
|
796 |
-
)
|
797 |
-
if self.cell_states_to_model is not None:
|
798 |
-
original_cell_emb = pu.compute_nonpadded_cell_embedding(
|
799 |
-
full_original_emb, "mean_pool"
|
800 |
-
)
|
801 |
-
perturbation_cell_emb = pu.compute_nonpadded_cell_embedding(
|
802 |
-
full_perturbation_emb, "mean_pool"
|
803 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
804 |
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
811 |
)
|
812 |
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
|
|
|
|
818 |
}
|
819 |
|
820 |
-
|
821 |
-
|
822 |
-
perturbed_gene_dict[perturbed_gene]
|
823 |
-
):
|
824 |
-
try:
|
825 |
-
stored_gene_embs_dict[
|
826 |
-
(perturbed_gene, affected_gene)
|
827 |
-
].append(gene_cos_sims[perturbation_i, gene_j].item())
|
828 |
-
except KeyError:
|
829 |
-
stored_gene_embs_dict[
|
830 |
-
(perturbed_gene, affected_gene)
|
831 |
-
] = gene_cos_sims[perturbation_i, gene_j].item()
|
832 |
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
|
|
|
|
|
|
852 |
|
853 |
-
|
854 |
-
|
855 |
-
pu.write_perturbation_dictionary(
|
856 |
-
cos_sims_dict,
|
857 |
-
f"{output_path_prefix}_dict_cell_embs_1Kbatch{pickle_batch}",
|
858 |
-
)
|
859 |
-
if self.emb_mode == "cell_and_gene":
|
860 |
-
pu.write_perturbation_dictionary(
|
861 |
-
stored_gene_embs_dict,
|
862 |
-
f"{output_path_prefix}_dict_gene_embs_1Kbatch{pickle_batch}",
|
863 |
-
)
|
864 |
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
if self.cell_states_to_model is None:
|
869 |
-
cos_sims_dict = defaultdict(list)
|
870 |
-
else:
|
871 |
-
cos_sims_dict = {
|
872 |
-
state: defaultdict(list)
|
873 |
-
for state in pu.get_possible_states(self.cell_states_to_model)
|
874 |
-
}
|
875 |
|
876 |
-
|
877 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
878 |
|
879 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
880 |
|
881 |
-
|
882 |
-
|
883 |
-
|
|
|
|
|
|
|
|
|
|
|
884 |
|
885 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
886 |
pu.write_perturbation_dictionary(
|
887 |
-
|
888 |
-
f"{output_path_prefix}_dict_gene_embs_1Kbatch{pickle_batch}",
|
889 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
890 |
|
|
|
891 |
def update_perturbation_dictionary(
|
892 |
self,
|
893 |
cos_sims_dict: defaultdict,
|
894 |
cos_sims_data: torch.Tensor,
|
895 |
-
filtered_input_data: Dataset,
|
896 |
-
indices_to_perturb: List[List[int]],
|
897 |
gene_list=None,
|
898 |
):
|
899 |
if gene_list is not None and cos_sims_data.shape[0] != len(gene_list):
|
900 |
logger.error(
|
901 |
f"len(cos_sims_data.shape[0]) != len(gene_list). \n \
|
902 |
-
cos_sims_data.shape[0]
|
903 |
-
len(gene_list)
|
904 |
)
|
905 |
raise
|
906 |
|
@@ -924,4 +1514,4 @@ class InSilicoPerturber:
|
|
924 |
for i, cos in enumerate(cos_sims_data.tolist()):
|
925 |
cos_sims_dict[(gene_list[i], "cell_emb")].append(cos)
|
926 |
|
927 |
-
return cos_sims_dict
|
|
|
63 |
"anchor_gene": {None, str},
|
64 |
"model_type": {"Pretrained", "GeneClassifier", "CellClassifier"},
|
65 |
"num_classes": {int},
|
66 |
+
"emb_mode": {"cls", "cell", "cls_and_gene", "cell_and_gene"},
|
67 |
"cell_emb_style": {"mean_pool"},
|
68 |
"filter_data": {None, dict},
|
69 |
"cell_states_to_model": {None, dict},
|
|
|
71 |
"max_ncells": {None, int},
|
72 |
"cell_inds_to_perturb": {"all", dict},
|
73 |
"emb_layer": {-1, 0},
|
74 |
+
"token_dictionary_file" : {None, str},
|
75 |
"forward_batch_size": {int},
|
76 |
"nproc": {int},
|
77 |
}
|
|
|
95 |
emb_layer=-1,
|
96 |
forward_batch_size=100,
|
97 |
nproc=4,
|
98 |
+
token_dictionary_file=None,
|
99 |
+
clear_mem_ncells=1000,
|
100 |
):
|
101 |
"""
|
102 |
Initialize in silico perturber.
|
|
|
131 |
| ENSEMBL ID of gene to use as anchor in combination perturbations.
|
132 |
| For example, if combos=1 and anchor_gene="ENSG00000148400":
|
133 |
| anchor gene will be perturbed in combination with each other gene.
|
134 |
+
model_type : {"Pretrained", "GeneClassifier", "CellClassifier", "MTLCellClassifier", "MTLCellClassifier-Quantized"}
|
135 |
+
| Whether model is the pretrained Geneformer or a fine-tuned gene, cell, or multitask cell classifier (+/- 8bit quantization).
|
136 |
num_classes : int
|
137 |
| If model is a gene or cell classifier, specify number of classes it was trained to classify.
|
138 |
| For the pretrained Geneformer model, number of classes is 0 as it is not a classifier.
|
139 |
+
emb_mode : {"cls", "cell", "cls_and_gene","cell_and_gene"}
|
140 |
+
| Whether to output impact of perturbation on CLS token, cell, and/or gene embeddings.
|
141 |
| Gene embedding shifts only available as compared to original cell, not comparing to goal state.
|
142 |
cell_emb_style : "mean_pool"
|
143 |
+
| Method for summarizing cell embeddings if not using CLS token.
|
144 |
| Currently only option is mean pooling of gene embeddings for given cell.
|
145 |
filter_data : None, dict
|
146 |
| Default is to use all input data for in silico perturbation study.
|
|
|
185 |
| Number of CPU processes to use.
|
186 |
token_dictionary_file : Path
|
187 |
| Path to pickle file containing token dictionary (Ensembl ID:token).
|
188 |
+
clear_mem_ncells : int
|
189 |
+
| Clear memory every n cells.
|
190 |
"""
|
191 |
try:
|
192 |
set_start_method("spawn")
|
|
|
223 |
self.emb_layer = emb_layer
|
224 |
self.forward_batch_size = forward_batch_size
|
225 |
self.nproc = nproc
|
226 |
+
self.token_dictionary_file = token_dictionary_file
|
227 |
+
self.clear_mem_ncells = clear_mem_ncells
|
228 |
|
229 |
self.validate_options()
|
230 |
|
231 |
# load token dictionary (Ensembl IDs:token)
|
232 |
+
if self.token_dictionary_file is None:
|
233 |
+
token_dictionary_file = TOKEN_DICTIONARY_FILE
|
234 |
with open(token_dictionary_file, "rb") as f:
|
235 |
self.gene_token_dict = pickle.load(f)
|
236 |
self.token_gene_dict = {v: k for k, v in self.gene_token_dict.items()}
|
237 |
|
238 |
self.pad_token_id = self.gene_token_dict.get("<pad>")
|
239 |
+
self.cls_token_id = self.gene_token_dict.get("<cls>")
|
240 |
+
self.eos_token_id = self.gene_token_dict.get("<eos>")
|
241 |
+
|
242 |
+
|
243 |
+
# Identify if special token is present in the token dictionary
|
244 |
+
if (self.cls_token_id is not None) and (self.eos_token_id is not None):
|
245 |
+
self.special_token = True
|
246 |
+
else:
|
247 |
+
if "cls" in self.emb_mode:
|
248 |
+
logger.error(f"emb_mode set to {self.emb_mode} but <cls> or <eos> token not in token dictionary.")
|
249 |
+
raise
|
250 |
+
self.special_token = False
|
251 |
|
252 |
if self.anchor_gene is None:
|
253 |
self.anchor_token = None
|
|
|
305 |
continue
|
306 |
valid_type = False
|
307 |
for option in valid_options:
|
308 |
+
if (option in [bool, int, list, dict, str]) and isinstance(
|
309 |
attr_value, option
|
310 |
):
|
311 |
valid_type = True
|
|
|
446 |
self.max_len = pu.get_model_input_size(model)
|
447 |
layer_to_quant = pu.quant_layers(model) + self.emb_layer
|
448 |
|
|
|
449 |
### filter input data ###
|
450 |
# general filtering of input data based on filter_data argument
|
451 |
filtered_input_data = pu.load_and_filter(
|
452 |
self.filter_data, self.nproc, input_data_file
|
453 |
)
|
454 |
+
|
455 |
+
# Ensure emb_mode is cls if first token of the filtered input data is cls token
|
456 |
+
if self.special_token:
|
457 |
+
if (filtered_input_data["input_ids"][0][0] == self.cls_token_id) and ("cls" not in self.emb_mode):
|
458 |
+
logger.error(
|
459 |
+
"Emb mode 'cls' or 'cls_and_gene' required when first token is <cls>."
|
460 |
+
)
|
461 |
+
raise
|
462 |
+
if ("cls" in self.emb_mode):
|
463 |
+
if (filtered_input_data["input_ids"][0][0] != self.cls_token_id) or (filtered_input_data["input_ids"][0][-1] != self.eos_token_id):
|
464 |
+
logger.error(
|
465 |
+
"Emb mode 'cls' and 'cls_and_gene' require that first token is <cls> and last token is <eos>."
|
466 |
+
)
|
467 |
+
raise
|
468 |
+
|
469 |
filtered_input_data = self.apply_additional_filters(filtered_input_data)
|
470 |
|
471 |
if self.perturb_group is True:
|
472 |
+
if (self.special_token) and ("cls" in self.emb_mode):
|
473 |
+
self.isp_perturb_set_special(
|
474 |
+
model, filtered_input_data, layer_to_quant, output_path_prefix
|
475 |
+
)
|
476 |
+
else:
|
477 |
+
self.isp_perturb_set(
|
478 |
+
model, filtered_input_data, layer_to_quant, output_path_prefix
|
479 |
+
)
|
480 |
else:
|
481 |
+
if (self.special_token) and ("cls" in self.emb_mode):
|
482 |
+
self.isp_perturb_all_special(
|
483 |
+
model, filtered_input_data, layer_to_quant, output_path_prefix
|
484 |
+
)
|
485 |
+
else:
|
486 |
+
self.isp_perturb_all(
|
487 |
+
model, filtered_input_data, layer_to_quant, output_path_prefix
|
488 |
+
)
|
489 |
|
490 |
def apply_additional_filters(self, filtered_input_data):
|
491 |
# additional filtering of input data dependent on isp mode
|
|
|
530 |
layer_to_quant: int,
|
531 |
output_path_prefix: str,
|
532 |
):
|
533 |
+
|
534 |
def make_group_perturbation_batch(example):
|
535 |
example_input_ids = example["input_ids"]
|
536 |
example["tokens_to_perturb"] = self.tokens_to_perturb
|
|
|
549 |
if self.perturb_type == "delete":
|
550 |
example = pu.delete_indices(example)
|
551 |
elif self.perturb_type == "overexpress":
|
552 |
+
example = pu.overexpress_tokens(example, self.max_len, self.special_token)
|
553 |
example["n_overflow"] = pu.calc_n_overflow(
|
554 |
self.max_len,
|
555 |
example["length"],
|
|
|
723 |
cos_sims_dict = self.update_perturbation_dictionary(
|
724 |
cos_sims_dict,
|
725 |
cos_sims_data,
|
|
|
|
|
726 |
gene_list,
|
727 |
)
|
728 |
else:
|
|
|
731 |
cos_sims_dict[state] = self.update_perturbation_dictionary(
|
732 |
cos_sims_dict[state],
|
733 |
cos_sims_data[state],
|
|
|
|
|
734 |
gene_list,
|
735 |
)
|
736 |
del minibatch
|
|
|
752 |
f"{output_path_prefix}_gene_embs_dict_{self.tokens_to_perturb}",
|
753 |
)
|
754 |
|
755 |
+
|
756 |
+
def isp_perturb_set_special(
|
757 |
+
self,
|
758 |
+
model,
|
759 |
+
filtered_input_data: Dataset,
|
760 |
+
layer_to_quant: int,
|
761 |
+
output_path_prefix: str,
|
762 |
+
):
|
763 |
+
|
764 |
+
def make_group_perturbation_batch(example):
|
765 |
+
example_input_ids = example["input_ids"]
|
766 |
+
example["tokens_to_perturb"] = self.tokens_to_perturb
|
767 |
+
indices_to_perturb = [
|
768 |
+
example_input_ids.index(token) if token in example_input_ids else None
|
769 |
+
for token in self.tokens_to_perturb
|
770 |
+
]
|
771 |
+
indices_to_perturb = [
|
772 |
+
item for item in indices_to_perturb if item is not None
|
773 |
+
]
|
774 |
+
if len(indices_to_perturb) > 0:
|
775 |
+
example["perturb_index"] = indices_to_perturb
|
776 |
+
else:
|
777 |
+
# -100 indicates tokens to overexpress are not present in rank value encoding
|
778 |
+
example["perturb_index"] = [-100]
|
779 |
+
if self.perturb_type == "delete":
|
780 |
+
example = pu.delete_indices(example)
|
781 |
+
elif self.perturb_type == "overexpress":
|
782 |
+
example = pu.overexpress_tokens(example, self.max_len, self.special_token)
|
783 |
+
example["n_overflow"] = pu.calc_n_overflow(
|
784 |
+
self.max_len,
|
785 |
+
example["length"],
|
786 |
+
self.tokens_to_perturb,
|
787 |
+
indices_to_perturb,
|
788 |
+
)
|
789 |
+
return example
|
790 |
+
|
791 |
+
total_batch_length = len(filtered_input_data)
|
792 |
+
if self.cell_states_to_model is None:
|
793 |
+
cos_sims_dict = defaultdict(list)
|
794 |
+
else:
|
795 |
+
cos_sims_dict = {
|
796 |
+
state: defaultdict(list)
|
797 |
+
for state in pu.get_possible_states(self.cell_states_to_model)
|
798 |
+
}
|
799 |
+
|
800 |
+
perturbed_data = filtered_input_data.map(
|
801 |
+
make_group_perturbation_batch, num_proc=self.nproc
|
802 |
+
)
|
803 |
+
|
804 |
+
if self.perturb_type == "overexpress":
|
805 |
+
filtered_input_data = filtered_input_data.add_column(
|
806 |
+
"n_overflow", perturbed_data["n_overflow"]
|
807 |
+
)
|
808 |
+
filtered_input_data = filtered_input_data.map(
|
809 |
+
pu.truncate_by_n_overflow_special, num_proc=self.nproc
|
810 |
+
)
|
811 |
+
|
812 |
+
if self.emb_mode == "cls_and_gene":
|
813 |
+
stored_gene_embs_dict = defaultdict(list)
|
814 |
+
|
815 |
+
# iterate through batches
|
816 |
+
for i in trange(0, total_batch_length, self.forward_batch_size):
|
817 |
+
max_range = min(i + self.forward_batch_size, total_batch_length)
|
818 |
+
inds_select = [i for i in range(i, max_range)]
|
819 |
+
|
820 |
+
minibatch = filtered_input_data.select(inds_select)
|
821 |
+
perturbation_batch = perturbed_data.select(inds_select)
|
822 |
+
|
823 |
+
##### CLS Embedding Mode #####
|
824 |
+
if self.emb_mode == "cls":
|
825 |
+
indices_to_perturb = perturbation_batch["perturb_index"]
|
826 |
+
|
827 |
+
original_cls_emb = get_embs(
|
828 |
+
model,
|
829 |
+
minibatch,
|
830 |
+
"cls",
|
831 |
+
layer_to_quant,
|
832 |
+
self.pad_token_id,
|
833 |
+
self.forward_batch_size,
|
834 |
+
token_gene_dict=self.token_gene_dict,
|
835 |
+
summary_stat=None,
|
836 |
+
silent=True,
|
837 |
+
)
|
838 |
+
|
839 |
+
perturbation_cls_emb = get_embs(
|
840 |
+
model,
|
841 |
+
perturbation_batch,
|
842 |
+
"cls",
|
843 |
+
layer_to_quant,
|
844 |
+
self.pad_token_id,
|
845 |
+
self.forward_batch_size,
|
846 |
+
token_gene_dict=self.token_gene_dict,
|
847 |
+
summary_stat=None,
|
848 |
+
silent=True,
|
849 |
+
)
|
850 |
+
|
851 |
+
# Calculate the cosine similarities
|
852 |
+
cls_cos_sims = pu.quant_cos_sims(
|
853 |
+
perturbation_cls_emb,
|
854 |
+
original_cls_emb,
|
855 |
+
self.cell_states_to_model,
|
856 |
+
self.state_embs_dict,
|
857 |
+
emb_mode="cell")
|
858 |
+
|
859 |
+
# Update perturbation dictionary
|
860 |
+
if self.cell_states_to_model is None:
|
861 |
+
cos_sims_dict = self.update_perturbation_dictionary(
|
862 |
+
cos_sims_dict,
|
863 |
+
cls_cos_sims,
|
864 |
+
gene_list = None,
|
865 |
+
)
|
866 |
+
else:
|
867 |
+
for state in cos_sims_dict.keys():
|
868 |
+
cos_sims_dict[state] = self.update_perturbation_dictionary(
|
869 |
+
cos_sims_dict[state],
|
870 |
+
cls_cos_sims[state],
|
871 |
+
gene_list = None,
|
872 |
+
)
|
873 |
+
|
874 |
+
##### CLS and Gene Embedding Mode #####
|
875 |
+
elif self.emb_mode == "cls_and_gene":
|
876 |
+
full_original_emb = get_embs(
|
877 |
+
model,
|
878 |
+
minibatch,
|
879 |
+
"gene",
|
880 |
+
layer_to_quant,
|
881 |
+
self.pad_token_id,
|
882 |
+
self.forward_batch_size,
|
883 |
+
self.token_gene_dict,
|
884 |
+
summary_stat=None,
|
885 |
+
silent=True,
|
886 |
+
)
|
887 |
+
indices_to_perturb = perturbation_batch["perturb_index"]
|
888 |
+
# remove indices that were perturbed
|
889 |
+
original_emb = pu.remove_perturbed_indices_set(
|
890 |
+
full_original_emb,
|
891 |
+
self.perturb_type,
|
892 |
+
indices_to_perturb,
|
893 |
+
self.tokens_to_perturb,
|
894 |
+
minibatch["length"],
|
895 |
+
)
|
896 |
+
full_perturbation_emb = get_embs(
|
897 |
+
model,
|
898 |
+
perturbation_batch,
|
899 |
+
"gene",
|
900 |
+
layer_to_quant,
|
901 |
+
self.pad_token_id,
|
902 |
+
self.forward_batch_size,
|
903 |
+
self.token_gene_dict,
|
904 |
+
summary_stat=None,
|
905 |
+
silent=True,
|
906 |
+
)
|
907 |
+
|
908 |
+
# remove special tokens and padding
|
909 |
+
original_emb = original_emb[:, 1:-1, :]
|
910 |
+
if self.perturb_type == "overexpress":
|
911 |
+
perturbation_emb = full_perturbation_emb[:,1+len(self.tokens_to_perturb):-1,:]
|
912 |
+
elif self.perturb_type == "delete":
|
913 |
+
perturbation_emb = full_perturbation_emb[:,1:max(perturbation_batch["length"])-1,:]
|
914 |
+
|
915 |
+
n_perturbation_genes = perturbation_emb.size()[1]
|
916 |
+
|
917 |
+
gene_cos_sims = pu.quant_cos_sims(
|
918 |
+
perturbation_emb,
|
919 |
+
original_emb,
|
920 |
+
self.cell_states_to_model,
|
921 |
+
self.state_embs_dict,
|
922 |
+
emb_mode="gene",
|
923 |
+
)
|
924 |
+
|
925 |
+
# get cls emb
|
926 |
+
original_cls_emb = full_original_emb[:,0,:]
|
927 |
+
perturbation_cls_emb = full_perturbation_emb[:,0,:]
|
928 |
+
|
929 |
+
cls_cos_sims = pu.quant_cos_sims(
|
930 |
+
perturbation_cls_emb,
|
931 |
+
original_cls_emb,
|
932 |
+
self.cell_states_to_model,
|
933 |
+
self.state_embs_dict,
|
934 |
+
emb_mode="cell",
|
935 |
+
)
|
936 |
+
|
937 |
+
# get cosine similarities in gene embeddings
|
938 |
+
# since getting gene embeddings, need gene names
|
939 |
+
|
940 |
+
gene_list = minibatch["input_ids"]
|
941 |
+
# need to truncate gene_list
|
942 |
+
genes_to_exclude = self.tokens_to_perturb + [self.cls_token_id, self.eos_token_id]
|
943 |
+
gene_list = [
|
944 |
+
[g for g in genes if g not in genes_to_exclude][
|
945 |
+
:n_perturbation_genes
|
946 |
+
]
|
947 |
+
for genes in gene_list
|
948 |
+
]
|
949 |
+
|
950 |
+
for cell_i, genes in enumerate(gene_list):
|
951 |
+
for gene_j, affected_gene in enumerate(genes):
|
952 |
+
if len(self.genes_to_perturb) > 1:
|
953 |
+
tokens_to_perturb = tuple(self.tokens_to_perturb)
|
954 |
+
else:
|
955 |
+
tokens_to_perturb = self.tokens_to_perturb[0]
|
956 |
+
|
957 |
+
# fill in the gene cosine similarities
|
958 |
+
try:
|
959 |
+
stored_gene_embs_dict[
|
960 |
+
(tokens_to_perturb, affected_gene)
|
961 |
+
].append(gene_cos_sims[cell_i, gene_j].item())
|
962 |
+
except KeyError:
|
963 |
+
stored_gene_embs_dict[
|
964 |
+
(tokens_to_perturb, affected_gene)
|
965 |
+
] = gene_cos_sims[cell_i, gene_j].item()
|
966 |
+
|
967 |
+
if self.cell_states_to_model is None:
|
968 |
+
cos_sims_dict = self.update_perturbation_dictionary(
|
969 |
+
cos_sims_dict,
|
970 |
+
cls_cos_sims,
|
971 |
+
gene_list = None,
|
972 |
+
)
|
973 |
+
else:
|
974 |
+
for state in cos_sims_dict.keys():
|
975 |
+
cos_sims_dict[state] = self.update_perturbation_dictionary(
|
976 |
+
cos_sims_dict[state],
|
977 |
+
cls_cos_sims[state],
|
978 |
+
gene_list = None,
|
979 |
+
)
|
980 |
+
del full_original_emb
|
981 |
+
del original_emb
|
982 |
+
del full_perturbation_emb
|
983 |
+
del perturbation_emb
|
984 |
+
del gene_cos_sims
|
985 |
+
|
986 |
+
del original_cls_emb
|
987 |
+
del perturbation_cls_emb
|
988 |
+
del cls_cos_sims
|
989 |
+
del minibatch
|
990 |
+
del perturbation_batch
|
991 |
+
|
992 |
+
torch.cuda.empty_cache()
|
993 |
+
|
994 |
+
pu.write_perturbation_dictionary(
|
995 |
+
cos_sims_dict,
|
996 |
+
f"{output_path_prefix}_cell_embs_dict_{self.tokens_to_perturb}",
|
997 |
+
)
|
998 |
+
|
999 |
+
if self.emb_mode == "cls_and_gene":
|
1000 |
+
pu.write_perturbation_dictionary(
|
1001 |
+
stored_gene_embs_dict,
|
1002 |
+
f"{output_path_prefix}_gene_embs_dict_{self.tokens_to_perturb}",
|
1003 |
+
)
|
1004 |
+
|
1005 |
def isp_perturb_all(
|
1006 |
self,
|
1007 |
model,
|
|
|
1020 |
|
1021 |
if self.emb_mode == "cell_and_gene":
|
1022 |
stored_gene_embs_dict = defaultdict(list)
|
1023 |
+
|
1024 |
+
num_inds_perturbed = 1 + self.combos
|
1025 |
+
for h in trange(len(filtered_input_data)):
|
1026 |
+
example_cell = filtered_input_data.select([h])
|
1027 |
full_original_emb = get_embs(
|
1028 |
model,
|
1029 |
example_cell,
|
|
|
1031 |
layer_to_quant,
|
1032 |
self.pad_token_id,
|
1033 |
self.forward_batch_size,
|
1034 |
+
self.token_gene_dict,
|
1035 |
summary_stat=None,
|
1036 |
silent=True,
|
1037 |
)
|
1038 |
+
|
1039 |
+
if self.cell_states_to_model is not None:
|
1040 |
+
original_cell_emb = pu.compute_nonpadded_cell_embedding(
|
1041 |
+
full_original_emb, "mean_pool"
|
1042 |
+
)
|
1043 |
+
|
1044 |
# gene_list is used to assign cos sims back to genes
|
|
|
1045 |
gene_list = example_cell["input_ids"][0][:]
|
1046 |
+
# need to remove the anchor gene
|
1047 |
if self.anchor_token is not None:
|
1048 |
for token in self.anchor_token:
|
1049 |
gene_list.remove(token)
|
1050 |
+
# index 0 is not overexpressed so remove
|
1051 |
+
if self.perturb_type == "overexpress":
|
1052 |
+
gene_list = gene_list[
|
1053 |
+
num_inds_perturbed:
|
1054 |
+
]
|
1055 |
+
# remove perturbed index for gene list dict
|
1056 |
+
perturbed_gene_dict = {
|
1057 |
+
gene: gene_list[:i] + gene_list[i + 1 :]
|
1058 |
+
for i, gene in enumerate(gene_list)
|
1059 |
+
}
|
1060 |
+
|
1061 |
perturbation_batch, indices_to_perturb = pu.make_perturbation_batch(
|
1062 |
example_cell,
|
1063 |
self.perturb_type,
|
|
|
1067 |
self.nproc,
|
1068 |
)
|
1069 |
|
1070 |
+
ispall_total_batch_length = len(perturbation_batch)
|
1071 |
+
for i in trange(0, ispall_total_batch_length, self.forward_batch_size, leave=False):
|
1072 |
+
ispall_max_range = min(i + self.forward_batch_size, ispall_total_batch_length)
|
1073 |
+
perturbation_minibatch = perturbation_batch.select([i for i in range(i, ispall_max_range)])
|
1074 |
+
indices_to_perturb_mini = indices_to_perturb[i : ispall_max_range]
|
1075 |
+
gene_list_mini = gene_list[i : ispall_max_range] # only perturbed genes from this minibatch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1076 |
|
1077 |
+
full_perturbation_emb = get_embs(
|
1078 |
+
model,
|
1079 |
+
perturbation_minibatch,
|
1080 |
+
"gene",
|
1081 |
+
layer_to_quant,
|
1082 |
+
self.pad_token_id,
|
1083 |
+
self.forward_batch_size,
|
1084 |
+
self.token_gene_dict,
|
1085 |
+
summary_stat=None,
|
1086 |
+
silent=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1087 |
)
|
1088 |
+
|
1089 |
+
del perturbation_minibatch
|
1090 |
+
|
1091 |
+
# need to remove overexpressed gene to quantify cosine shifts
|
1092 |
+
if self.perturb_type == "overexpress":
|
1093 |
+
perturbation_emb = full_perturbation_emb[:, num_inds_perturbed:, :]
|
1094 |
+
|
1095 |
+
elif self.perturb_type == "delete":
|
1096 |
+
perturbation_emb = full_perturbation_emb
|
1097 |
+
|
1098 |
+
|
1099 |
+
if self.cell_states_to_model is None or self.emb_mode == "cell_and_gene":
|
1100 |
+
original_emb_minibatch = pu.make_comparison_batch(
|
1101 |
+
full_original_emb, indices_to_perturb_mini, perturb_group=False
|
1102 |
+
)
|
1103 |
+
gene_cos_sims = pu.quant_cos_sims(
|
1104 |
+
perturbation_emb,
|
1105 |
+
original_emb_minibatch,
|
1106 |
+
self.cell_states_to_model,
|
1107 |
+
self.state_embs_dict,
|
1108 |
+
emb_mode="gene",
|
1109 |
+
)
|
1110 |
+
del original_emb_minibatch
|
1111 |
+
|
1112 |
+
if self.cell_states_to_model is not None:
|
1113 |
+
perturbation_cell_emb = pu.compute_nonpadded_cell_embedding(
|
1114 |
+
full_perturbation_emb, "mean_pool"
|
1115 |
+
)
|
1116 |
+
|
1117 |
+
cell_cos_sims = pu.quant_cos_sims(
|
1118 |
+
perturbation_cell_emb,
|
1119 |
+
original_cell_emb,
|
1120 |
+
self.cell_states_to_model,
|
1121 |
+
self.state_embs_dict,
|
1122 |
+
emb_mode="cell",
|
1123 |
+
)
|
1124 |
+
del perturbation_cell_emb
|
1125 |
+
|
1126 |
+
if self.emb_mode == "cell_and_gene":
|
1127 |
|
1128 |
+
for perturbation_i, perturbed_gene in enumerate(gene_list_mini):
|
1129 |
+
for gene_j, affected_gene in enumerate(
|
1130 |
+
perturbed_gene_dict[perturbed_gene]
|
1131 |
+
):
|
1132 |
+
try:
|
1133 |
+
stored_gene_embs_dict[
|
1134 |
+
(perturbed_gene, affected_gene)
|
1135 |
+
].append(gene_cos_sims[perturbation_i, gene_j].item())
|
1136 |
+
except KeyError:
|
1137 |
+
stored_gene_embs_dict[
|
1138 |
+
(perturbed_gene, affected_gene)
|
1139 |
+
] = gene_cos_sims[perturbation_i, gene_j].item()
|
1140 |
+
|
1141 |
+
del full_perturbation_emb
|
1142 |
+
|
1143 |
+
if self.cell_states_to_model is None:
|
1144 |
+
cos_sims_data = torch.mean(gene_cos_sims, dim=1)
|
1145 |
+
cos_sims_dict = self.update_perturbation_dictionary(
|
1146 |
+
cos_sims_dict,
|
1147 |
+
cos_sims_data,
|
1148 |
+
gene_list_mini,
|
1149 |
+
)
|
1150 |
+
else:
|
1151 |
+
cos_sims_data = cell_cos_sims
|
1152 |
+
for state in cos_sims_dict.keys():
|
1153 |
+
cos_sims_dict[state] = self.update_perturbation_dictionary(
|
1154 |
+
cos_sims_dict[state],
|
1155 |
+
cos_sims_data[state],
|
1156 |
+
gene_list_mini,
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
# save dict to disk every self.clear_mem_ncells/10 (default 100) simulated cells
|
1160 |
+
if i % self.clear_mem_ncells/10 == 0:
|
1161 |
+
pu.write_perturbation_dictionary(
|
1162 |
+
cos_sims_dict,
|
1163 |
+
f"{output_path_prefix}_dict_cell_embs_{h}batch{pickle_batch}",
|
1164 |
+
)
|
1165 |
+
if self.emb_mode == "cell_and_gene":
|
1166 |
+
pu.write_perturbation_dictionary(
|
1167 |
+
stored_gene_embs_dict,
|
1168 |
+
f"{output_path_prefix}_dict_gene_embs_{h}batch{pickle_batch}",
|
1169 |
+
)
|
1170 |
+
|
1171 |
+
# reset and clear memory every self.clear_mem_ncells (default 1000) simulated cells or at the end of the example cell
|
1172 |
+
if i % self.clear_mem_ncells == 0:
|
1173 |
+
pickle_batch += 1
|
1174 |
+
if self.cell_states_to_model is None:
|
1175 |
+
cos_sims_dict = defaultdict(list)
|
1176 |
+
else:
|
1177 |
+
cos_sims_dict = {
|
1178 |
+
state: defaultdict(list)
|
1179 |
+
for state in pu.get_possible_states(self.cell_states_to_model)
|
1180 |
+
}
|
1181 |
+
|
1182 |
+
if self.emb_mode == "cell_and_gene":
|
1183 |
+
stored_gene_embs_dict = defaultdict(list)
|
1184 |
+
|
1185 |
+
torch.cuda.empty_cache()
|
1186 |
+
|
1187 |
+
pu.write_perturbation_dictionary(
|
1188 |
+
cos_sims_dict, f"{output_path_prefix}_dict_cell_embs_{h}batch{pickle_batch}"
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
if self.emb_mode == "cell_and_gene":
|
1192 |
+
pu.write_perturbation_dictionary(
|
1193 |
+
stored_gene_embs_dict,
|
1194 |
+
f"{output_path_prefix}_dict_gene_embs_{h}batch{pickle_batch}",
|
1195 |
)
|
1196 |
|
1197 |
+
pickle_batch = -1
|
1198 |
+
if self.cell_states_to_model is None:
|
1199 |
+
cos_sims_dict = defaultdict(list)
|
1200 |
+
else:
|
1201 |
+
cos_sims_dict = {
|
1202 |
+
state: defaultdict(list)
|
1203 |
+
for state in pu.get_possible_states(self.cell_states_to_model)
|
1204 |
}
|
1205 |
|
1206 |
+
if self.emb_mode == "cell_and_gene":
|
1207 |
+
stored_gene_embs_dict = defaultdict(list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1208 |
|
1209 |
+
# clear memory between cells
|
1210 |
+
del perturbation_batch
|
1211 |
+
del full_original_emb
|
1212 |
+
if self.cell_states_to_model is not None:
|
1213 |
+
del original_cell_emb
|
1214 |
+
torch.cuda.empty_cache()
|
1215 |
+
|
1216 |
+
def isp_perturb_all_special(
|
1217 |
+
self,
|
1218 |
+
model,
|
1219 |
+
filtered_input_data: Dataset,
|
1220 |
+
layer_to_quant: int,
|
1221 |
+
output_path_prefix: str,
|
1222 |
+
):
|
1223 |
+
pickle_batch = -1
|
1224 |
+
if self.cell_states_to_model is None:
|
1225 |
+
cos_sims_dict = defaultdict(list)
|
1226 |
+
else:
|
1227 |
+
cos_sims_dict = {
|
1228 |
+
state: defaultdict(list)
|
1229 |
+
for state in pu.get_possible_states(self.cell_states_to_model)
|
1230 |
+
}
|
1231 |
|
1232 |
+
if self.emb_mode == "cls_and_gene":
|
1233 |
+
stored_gene_embs_dict = defaultdict(list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1234 |
|
1235 |
+
num_inds_perturbed = 1 + self.combos
|
1236 |
+
for h in trange(len(filtered_input_data)):
|
1237 |
+
example_cell = filtered_input_data.select([h])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1238 |
|
1239 |
+
# get original example cell cls and/or gene embs for comparison
|
1240 |
+
if self.emb_mode == "cls":
|
1241 |
+
original_cls_emb = get_embs(
|
1242 |
+
model,
|
1243 |
+
example_cell,
|
1244 |
+
"cls",
|
1245 |
+
layer_to_quant,
|
1246 |
+
self.pad_token_id,
|
1247 |
+
self.forward_batch_size,
|
1248 |
+
self.token_gene_dict,
|
1249 |
+
summary_stat=None,
|
1250 |
+
silent=True,
|
1251 |
+
)
|
1252 |
+
elif self.emb_mode == "cls_and_gene":
|
1253 |
+
full_original_emb = get_embs(
|
1254 |
+
model,
|
1255 |
+
example_cell,
|
1256 |
+
"gene",
|
1257 |
+
layer_to_quant,
|
1258 |
+
self.pad_token_id,
|
1259 |
+
self.forward_batch_size,
|
1260 |
+
self.token_gene_dict,
|
1261 |
+
summary_stat=None,
|
1262 |
+
silent=True,
|
1263 |
+
)
|
1264 |
+
original_cls_emb = full_original_emb[:,0,:].clone().detach()
|
1265 |
+
|
1266 |
+
# gene_list is used to assign cos sims back to genes
|
1267 |
+
gene_list = example_cell["input_ids"][0][:]
|
1268 |
|
1269 |
+
# need to remove special tokens
|
1270 |
+
for token in [self.cls_token_id, self.eos_token_id]:
|
1271 |
+
gene_list.remove(token)
|
1272 |
+
# need to remove the anchor gene
|
1273 |
+
if self.anchor_token is not None:
|
1274 |
+
for token in self.anchor_token:
|
1275 |
+
gene_list.remove(token)
|
1276 |
+
# index 0 is not overexpressed so remove
|
1277 |
+
if self.perturb_type == "overexpress":
|
1278 |
+
gene_list = gene_list[
|
1279 |
+
num_inds_perturbed:
|
1280 |
+
]
|
1281 |
+
# remove perturbed index for gene list dict
|
1282 |
+
perturbed_gene_dict = {
|
1283 |
+
gene: gene_list[:i] + gene_list[i + 1 :]
|
1284 |
+
for i, gene in enumerate(gene_list)
|
1285 |
+
}
|
1286 |
|
1287 |
+
perturbation_batch, indices_to_perturb = pu.make_perturbation_batch_special(
|
1288 |
+
example_cell,
|
1289 |
+
self.perturb_type,
|
1290 |
+
self.tokens_to_perturb,
|
1291 |
+
self.anchor_token,
|
1292 |
+
self.combos,
|
1293 |
+
self.nproc,
|
1294 |
+
)
|
1295 |
|
1296 |
+
ispall_total_batch_length = len(perturbation_batch)
|
1297 |
+
for i in trange(0, ispall_total_batch_length, self.forward_batch_size, leave=False):
|
1298 |
+
ispall_max_range = min(i + self.forward_batch_size, ispall_total_batch_length)
|
1299 |
+
perturbation_minibatch = perturbation_batch.select([i for i in range(i, ispall_max_range)])
|
1300 |
+
indices_to_perturb_mini = indices_to_perturb[i : ispall_max_range]
|
1301 |
+
gene_list_mini = gene_list[i : ispall_max_range] # only perturbed genes from this minibatch
|
1302 |
+
|
1303 |
+
##### CLS Embedding Mode #####
|
1304 |
+
if self.emb_mode == "cls":
|
1305 |
+
# Extract cls embeddings from perturbed cells
|
1306 |
+
perturbation_cls_emb = get_embs(
|
1307 |
+
model,
|
1308 |
+
perturbation_minibatch,
|
1309 |
+
"cls",
|
1310 |
+
layer_to_quant,
|
1311 |
+
self.pad_token_id,
|
1312 |
+
self.forward_batch_size,
|
1313 |
+
self.token_gene_dict,
|
1314 |
+
summary_stat=None,
|
1315 |
+
silent=True,
|
1316 |
+
)
|
1317 |
+
|
1318 |
+
# Calculate cosine similarities
|
1319 |
+
cls_cos_sims = pu.quant_cos_sims(
|
1320 |
+
perturbation_cls_emb,
|
1321 |
+
original_cls_emb,
|
1322 |
+
self.cell_states_to_model,
|
1323 |
+
self.state_embs_dict,
|
1324 |
+
emb_mode="cell",
|
1325 |
+
)
|
1326 |
+
|
1327 |
+
if self.cell_states_to_model is None:
|
1328 |
+
cos_sims_dict = self.update_perturbation_dictionary(
|
1329 |
+
cos_sims_dict,
|
1330 |
+
cls_cos_sims,
|
1331 |
+
gene_list_mini,
|
1332 |
+
)
|
1333 |
+
else:
|
1334 |
+
|
1335 |
+
for state in cos_sims_dict.keys():
|
1336 |
+
cos_sims_dict[state] = self.update_perturbation_dictionary(
|
1337 |
+
cos_sims_dict[state],
|
1338 |
+
cls_cos_sims[state],
|
1339 |
+
gene_list_mini,
|
1340 |
+
)
|
1341 |
+
|
1342 |
+
del perturbation_minibatch
|
1343 |
+
del perturbation_cls_emb
|
1344 |
+
del cls_cos_sims
|
1345 |
+
|
1346 |
+
##### CLS and Gene Embedding Mode #####
|
1347 |
+
elif self.emb_mode == "cls_and_gene":
|
1348 |
+
full_perturbation_emb = get_embs(
|
1349 |
+
model,
|
1350 |
+
perturbation_minibatch,
|
1351 |
+
"gene",
|
1352 |
+
layer_to_quant,
|
1353 |
+
self.pad_token_id,
|
1354 |
+
self.forward_batch_size,
|
1355 |
+
self.token_gene_dict,
|
1356 |
+
summary_stat=None,
|
1357 |
+
silent=True,
|
1358 |
+
)
|
1359 |
+
|
1360 |
+
# need to remove overexpressed gene and cls/eos to quantify cosine shifts
|
1361 |
+
if self.perturb_type == "overexpress":
|
1362 |
+
perturbation_emb = full_perturbation_emb[:, 1+num_inds_perturbed:-1, :].clone().detach()
|
1363 |
+
elif self.perturb_type == "delete":
|
1364 |
+
perturbation_emb = full_perturbation_emb[:, 1:-1, :].clone().detach()
|
1365 |
+
|
1366 |
+
original_emb_minibatch = pu.make_comparison_batch(
|
1367 |
+
full_original_emb, indices_to_perturb_mini, perturb_group=False
|
1368 |
+
)
|
1369 |
+
|
1370 |
+
original_emb_minibatch = original_emb_minibatch[:, 1:-1, :].clone().detach()
|
1371 |
+
gene_cos_sims = pu.quant_cos_sims(
|
1372 |
+
perturbation_emb,
|
1373 |
+
original_emb_minibatch,
|
1374 |
+
self.cell_states_to_model,
|
1375 |
+
self.state_embs_dict,
|
1376 |
+
emb_mode="gene",
|
1377 |
+
)
|
1378 |
+
|
1379 |
+
for perturbation_i, perturbed_gene in enumerate(gene_list_mini):
|
1380 |
+
for gene_j, affected_gene in enumerate(
|
1381 |
+
perturbed_gene_dict[perturbed_gene]
|
1382 |
+
):
|
1383 |
+
try:
|
1384 |
+
stored_gene_embs_dict[
|
1385 |
+
(perturbed_gene, affected_gene)
|
1386 |
+
].append(gene_cos_sims[perturbation_i, gene_j].item())
|
1387 |
+
except KeyError:
|
1388 |
+
stored_gene_embs_dict[
|
1389 |
+
(perturbed_gene, affected_gene)
|
1390 |
+
] = gene_cos_sims[perturbation_i, gene_j].item()
|
1391 |
+
|
1392 |
+
# get cls emb
|
1393 |
+
perturbation_cls_emb = full_perturbation_emb[:,0,:].clone().detach()
|
1394 |
+
|
1395 |
+
cls_cos_sims = pu.quant_cos_sims(
|
1396 |
+
perturbation_cls_emb,
|
1397 |
+
original_cls_emb,
|
1398 |
+
self.cell_states_to_model,
|
1399 |
+
self.state_embs_dict,
|
1400 |
+
emb_mode="cell",
|
1401 |
+
)
|
1402 |
+
|
1403 |
+
if self.cell_states_to_model is None:
|
1404 |
+
cos_sims_dict = self.update_perturbation_dictionary(
|
1405 |
+
cos_sims_dict,
|
1406 |
+
cls_cos_sims,
|
1407 |
+
gene_list_mini,
|
1408 |
+
)
|
1409 |
+
else:
|
1410 |
+
for state in cos_sims_dict.keys():
|
1411 |
+
cos_sims_dict[state] = self.update_perturbation_dictionary(
|
1412 |
+
cos_sims_dict[state],
|
1413 |
+
cls_cos_sims[state],
|
1414 |
+
gene_list_mini,
|
1415 |
+
)
|
1416 |
+
|
1417 |
+
del perturbation_minibatch
|
1418 |
+
del original_emb_minibatch
|
1419 |
+
del full_perturbation_emb
|
1420 |
+
del perturbation_emb
|
1421 |
+
del perturbation_cls_emb
|
1422 |
+
del cls_cos_sims
|
1423 |
+
del gene_cos_sims
|
1424 |
+
|
1425 |
+
# save dict to disk every self.clear_mem_ncells/10 (default 100) simulated cells
|
1426 |
+
if i % max(1,self.clear_mem_ncells/10) == 0:
|
1427 |
+
pu.write_perturbation_dictionary(
|
1428 |
+
cos_sims_dict,
|
1429 |
+
f"{output_path_prefix}_dict_cell_embs_{h}batch{pickle_batch}",
|
1430 |
+
)
|
1431 |
+
if self.emb_mode == "cls_and_gene":
|
1432 |
+
pu.write_perturbation_dictionary(
|
1433 |
+
stored_gene_embs_dict,
|
1434 |
+
f"{output_path_prefix}_dict_gene_embs_{h}batch{pickle_batch}",
|
1435 |
+
)
|
1436 |
+
|
1437 |
+
# reset and clear memory every self.clear_mem_ncells (default 1000) simulated cells or at the end of the example cell
|
1438 |
+
if i % self.clear_mem_ncells == 0:
|
1439 |
+
pickle_batch += 1
|
1440 |
+
if self.cell_states_to_model is None:
|
1441 |
+
cos_sims_dict = defaultdict(list)
|
1442 |
+
else:
|
1443 |
+
cos_sims_dict = {
|
1444 |
+
state: defaultdict(list)
|
1445 |
+
for state in pu.get_possible_states(self.cell_states_to_model)
|
1446 |
+
}
|
1447 |
+
|
1448 |
+
if self.emb_mode == "cls_and_gene":
|
1449 |
+
stored_gene_embs_dict = defaultdict(list)
|
1450 |
+
|
1451 |
+
torch.cuda.empty_cache()
|
1452 |
+
|
1453 |
pu.write_perturbation_dictionary(
|
1454 |
+
cos_sims_dict, f"{output_path_prefix}_dict_cell_embs_{h}batch{pickle_batch}"
|
|
|
1455 |
)
|
1456 |
+
|
1457 |
+
if self.emb_mode == "cls_and_gene":
|
1458 |
+
pu.write_perturbation_dictionary(
|
1459 |
+
stored_gene_embs_dict,
|
1460 |
+
f"{output_path_prefix}_dict_gene_embs_{h}batch{pickle_batch}",
|
1461 |
+
)
|
1462 |
+
|
1463 |
+
pickle_batch = -1
|
1464 |
+
if self.cell_states_to_model is None:
|
1465 |
+
cos_sims_dict = defaultdict(list)
|
1466 |
+
else:
|
1467 |
+
cos_sims_dict = {
|
1468 |
+
state: defaultdict(list)
|
1469 |
+
for state in pu.get_possible_states(self.cell_states_to_model)
|
1470 |
+
}
|
1471 |
+
|
1472 |
+
if self.emb_mode == "cls_and_gene":
|
1473 |
+
stored_gene_embs_dict = defaultdict(list)
|
1474 |
+
|
1475 |
+
# clear memory between cells
|
1476 |
+
del perturbation_batch
|
1477 |
+
del original_cls_emb
|
1478 |
+
if self.emb_mode == "cls_and_gene":
|
1479 |
+
del full_original_emb
|
1480 |
+
torch.cuda.empty_cache()
|
1481 |
|
1482 |
+
|
1483 |
def update_perturbation_dictionary(
|
1484 |
self,
|
1485 |
cos_sims_dict: defaultdict,
|
1486 |
cos_sims_data: torch.Tensor,
|
|
|
|
|
1487 |
gene_list=None,
|
1488 |
):
|
1489 |
if gene_list is not None and cos_sims_data.shape[0] != len(gene_list):
|
1490 |
logger.error(
|
1491 |
f"len(cos_sims_data.shape[0]) != len(gene_list). \n \
|
1492 |
+
{cos_sims_data.shape[0]=}.\n \
|
1493 |
+
{len(gene_list)=}."
|
1494 |
)
|
1495 |
raise
|
1496 |
|
|
|
1514 |
for i, cos in enumerate(cos_sims_data.tolist()):
|
1515 |
cos_sims_dict[(gene_list[i], "cell_emb")].append(cos)
|
1516 |
|
1517 |
+
return cos_sims_dict
|
geneformer/in_silico_perturber_stats.py
CHANGED
@@ -114,6 +114,7 @@ def read_dictionaries(
|
|
114 |
state_dict[state_value][key] += new_dict[key]
|
115 |
except KeyError:
|
116 |
state_dict[state_value][key] = new_dict[key]
|
|
|
117 |
if not file_found:
|
118 |
logger.error(
|
119 |
"No raw data for processing found within provided directory. "
|
@@ -237,13 +238,16 @@ def find(variable, x):
|
|
237 |
|
238 |
|
239 |
def isp_aggregate_gene_shifts(
|
240 |
-
cos_sims_df, dict_list, gene_token_id_dict, gene_id_name_dict
|
241 |
):
|
242 |
cos_shift_data = dict()
|
243 |
for i in trange(cos_sims_df.shape[0]):
|
244 |
token = cos_sims_df["Gene"][i]
|
245 |
for dict_i in dict_list:
|
246 |
-
|
|
|
|
|
|
|
247 |
for key in affected_pairs:
|
248 |
if key in cos_shift_data.keys():
|
249 |
cos_shift_data[key] += dict_i.get(key, [])
|
@@ -256,11 +260,11 @@ def isp_aggregate_gene_shifts(
|
|
256 |
cos_sims_full_df = pd.DataFrame()
|
257 |
cos_sims_full_df["Perturbed"] = [k[0] for k, v in cos_data_mean.items()]
|
258 |
cos_sims_full_df["Gene_name"] = [
|
259 |
-
cos_sims_df[cos_sims_df["Gene"] == k[0]]["Gene_name"]
|
260 |
for k, v in cos_data_mean.items()
|
261 |
]
|
262 |
cos_sims_full_df["Ensembl_ID"] = [
|
263 |
-
cos_sims_df[cos_sims_df["Gene"] == k[0]]["Ensembl_ID"]
|
264 |
for k, v in cos_data_mean.items()
|
265 |
]
|
266 |
|
@@ -690,7 +694,7 @@ class InSilicoPerturberStats:
|
|
690 |
| Default is assuming genes_to_perturb in isp experiment was "all" (each gene in each cell).
|
691 |
| Otherwise, may provide a list of ENSEMBL IDs of genes perturbed as a group all together.
|
692 |
combos : {0,1,2}
|
693 |
-
| Whether
|
694 |
anchor_gene : None, str
|
695 |
| ENSEMBL ID of gene to use as anchor in combination perturbations or in testing effect on downstream genes.
|
696 |
| For example, if combos=1 and anchor_gene="ENSG00000136574":
|
@@ -1014,7 +1018,7 @@ class InSilicoPerturberStats:
|
|
1014 |
},
|
1015 |
index=[i for i in range(len(gene_list))],
|
1016 |
)
|
1017 |
-
|
1018 |
if self.mode == "goal_state_shift":
|
1019 |
cos_sims_df = isp_stats_to_goal_state(
|
1020 |
cos_sims_df_initial,
|
@@ -1045,11 +1049,23 @@ class InSilicoPerturberStats:
|
|
1045 |
cos_sims_df = isp_aggregate_grouped_perturb(cos_sims_df_initial, dict_list, self.genes_perturbed)
|
1046 |
|
1047 |
elif self.mode == "aggregate_gene_shifts":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1048 |
cos_sims_df = isp_aggregate_gene_shifts(
|
1049 |
cos_sims_df_initial,
|
1050 |
dict_list,
|
1051 |
self.gene_token_id_dict,
|
1052 |
self.gene_id_name_dict,
|
|
|
1053 |
)
|
1054 |
|
1055 |
# save perturbation stats to output_path
|
|
|
114 |
state_dict[state_value][key] += new_dict[key]
|
115 |
except KeyError:
|
116 |
state_dict[state_value][key] = new_dict[key]
|
117 |
+
|
118 |
if not file_found:
|
119 |
logger.error(
|
120 |
"No raw data for processing found within provided directory. "
|
|
|
238 |
|
239 |
|
240 |
def isp_aggregate_gene_shifts(
|
241 |
+
cos_sims_df, dict_list, gene_token_id_dict, gene_id_name_dict, token_dtype
|
242 |
):
|
243 |
cos_shift_data = dict()
|
244 |
for i in trange(cos_sims_df.shape[0]):
|
245 |
token = cos_sims_df["Gene"][i]
|
246 |
for dict_i in dict_list:
|
247 |
+
if token_dtype == "nontuple":
|
248 |
+
affected_pairs = [k for k, v in dict_i.items() if k[0] == token]
|
249 |
+
else:
|
250 |
+
affected_pairs = [k for k, v in dict_i.items() if find(k[0], token)]
|
251 |
for key in affected_pairs:
|
252 |
if key in cos_shift_data.keys():
|
253 |
cos_shift_data[key] += dict_i.get(key, [])
|
|
|
260 |
cos_sims_full_df = pd.DataFrame()
|
261 |
cos_sims_full_df["Perturbed"] = [k[0] for k, v in cos_data_mean.items()]
|
262 |
cos_sims_full_df["Gene_name"] = [
|
263 |
+
cos_sims_df[cos_sims_df["Gene"] == k[0]]["Gene_name"].item()
|
264 |
for k, v in cos_data_mean.items()
|
265 |
]
|
266 |
cos_sims_full_df["Ensembl_ID"] = [
|
267 |
+
cos_sims_df[cos_sims_df["Gene"] == k[0]]["Ensembl_ID"].item()
|
268 |
for k, v in cos_data_mean.items()
|
269 |
]
|
270 |
|
|
|
694 |
| Default is assuming genes_to_perturb in isp experiment was "all" (each gene in each cell).
|
695 |
| Otherwise, may provide a list of ENSEMBL IDs of genes perturbed as a group all together.
|
696 |
combos : {0,1,2}
|
697 |
+
| Whether genex perturbed in isp experiment were perturbed individually (0), in pairs (1), or in triplets (2).
|
698 |
anchor_gene : None, str
|
699 |
| ENSEMBL ID of gene to use as anchor in combination perturbations or in testing effect on downstream genes.
|
700 |
| For example, if combos=1 and anchor_gene="ENSG00000136574":
|
|
|
1018 |
},
|
1019 |
index=[i for i in range(len(gene_list))],
|
1020 |
)
|
1021 |
+
|
1022 |
if self.mode == "goal_state_shift":
|
1023 |
cos_sims_df = isp_stats_to_goal_state(
|
1024 |
cos_sims_df_initial,
|
|
|
1049 |
cos_sims_df = isp_aggregate_grouped_perturb(cos_sims_df_initial, dict_list, self.genes_perturbed)
|
1050 |
|
1051 |
elif self.mode == "aggregate_gene_shifts":
|
1052 |
+
if (self.genes_perturbed == "all") and (self.combos == 0):
|
1053 |
+
tuple_types = [True if isinstance(genes, tuple) else False for genes in gene_list]
|
1054 |
+
if all(tuple_types):
|
1055 |
+
token_dtype = "tuple"
|
1056 |
+
elif not any(tuple_types):
|
1057 |
+
token_dtype = "nontuple"
|
1058 |
+
else:
|
1059 |
+
token_dtype = "mix"
|
1060 |
+
else:
|
1061 |
+
token_dtype = "mix"
|
1062 |
+
|
1063 |
cos_sims_df = isp_aggregate_gene_shifts(
|
1064 |
cos_sims_df_initial,
|
1065 |
dict_list,
|
1066 |
self.gene_token_id_dict,
|
1067 |
self.gene_id_name_dict,
|
1068 |
+
token_dtype
|
1069 |
)
|
1070 |
|
1071 |
# save perturbation stats to output_path
|
geneformer/mtl/__init__.py
ADDED
File without changes
|
geneformer/mtl/collators.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#imports
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from ..collator_for_classification import DataCollatorForGeneClassification
|
5 |
+
|
6 |
+
"""
|
7 |
+
Geneformer collator for multi-task cell classification.
|
8 |
+
"""
|
9 |
+
|
10 |
+
class DataCollatorForMultitaskCellClassification(DataCollatorForGeneClassification):
|
11 |
+
class_type = "cell"
|
12 |
+
|
13 |
+
def __init__(self, *args, **kwargs) -> None:
|
14 |
+
super().__init__(*args, **kwargs)
|
15 |
+
|
16 |
+
def _prepare_batch(self, features):
|
17 |
+
# Process inputs as usual
|
18 |
+
batch = self.tokenizer.pad(
|
19 |
+
features,
|
20 |
+
class_type=self.class_type,
|
21 |
+
padding=self.padding,
|
22 |
+
max_length=self.max_length,
|
23 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
24 |
+
return_tensors="pt",
|
25 |
+
)
|
26 |
+
|
27 |
+
# Check if labels are present
|
28 |
+
if "label" in features[0]:
|
29 |
+
# Initialize labels dictionary for all tasks
|
30 |
+
labels = {task: [] for task in features[0]["label"].keys()}
|
31 |
+
|
32 |
+
# Populate labels for each task
|
33 |
+
for feature in features:
|
34 |
+
for task, label in feature["label"].items():
|
35 |
+
labels[task].append(label)
|
36 |
+
|
37 |
+
# Convert label lists to tensors, handling dictionaries appropriately
|
38 |
+
for task in labels:
|
39 |
+
if isinstance(labels[task][0], (list, torch.Tensor)):
|
40 |
+
dtype = torch.long
|
41 |
+
labels[task] = torch.tensor(labels[task], dtype=dtype)
|
42 |
+
elif isinstance(labels[task][0], dict):
|
43 |
+
# Handle dict specifically if needed
|
44 |
+
pass # Resolve nested data structure
|
45 |
+
|
46 |
+
# Update the batch to include task-specific labels
|
47 |
+
batch["labels"] = labels
|
48 |
+
else:
|
49 |
+
# If no labels are present, create empty labels for all tasks
|
50 |
+
batch["labels"] = {task: torch.tensor([], dtype=torch.long) for task in features[0]["input_ids"].keys()}
|
51 |
+
|
52 |
+
return batch
|
53 |
+
|
54 |
+
def __call__(self, features):
|
55 |
+
batch = self._prepare_batch(features)
|
56 |
+
|
57 |
+
for k, v in batch.items():
|
58 |
+
if torch.is_tensor(v):
|
59 |
+
batch[k] = v.clone().detach()
|
60 |
+
elif isinstance(v, dict):
|
61 |
+
# Assuming nested structure needs conversion
|
62 |
+
batch[k] = {task: torch.tensor(labels, dtype=torch.int64) for task, labels in v.items()}
|
63 |
+
else:
|
64 |
+
batch[k] = torch.tensor(v, dtype=torch.int64)
|
65 |
+
|
66 |
+
return batch
|
geneformer/mtl/data.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .imports import *
|
2 |
+
import os
|
3 |
+
from .collators import DataCollatorForMultitaskCellClassification
|
4 |
+
|
5 |
+
def load_and_preprocess_data(dataset_path, config, is_test=False, dataset_type=""):
|
6 |
+
try:
|
7 |
+
dataset = load_from_disk(dataset_path)
|
8 |
+
|
9 |
+
task_names = [f"task{i+1}" for i in range(len(config["task_columns"]))]
|
10 |
+
task_to_column = dict(zip(task_names, config["task_columns"]))
|
11 |
+
config["task_names"] = task_names
|
12 |
+
|
13 |
+
if not is_test:
|
14 |
+
available_columns = set(dataset.column_names)
|
15 |
+
for column in task_to_column.values():
|
16 |
+
if column not in available_columns:
|
17 |
+
raise KeyError(f"Column {column} not found in the dataset. Available columns: {list(available_columns)}")
|
18 |
+
|
19 |
+
label_mappings = {}
|
20 |
+
task_label_mappings = {}
|
21 |
+
cell_id_mapping = {}
|
22 |
+
num_labels_list = []
|
23 |
+
|
24 |
+
# Load or create task label mappings
|
25 |
+
if not is_test:
|
26 |
+
for task, column in task_to_column.items():
|
27 |
+
unique_values = sorted(set(dataset[column])) # Ensure consistency
|
28 |
+
label_mappings[column] = {label: idx for idx, label in enumerate(unique_values)}
|
29 |
+
task_label_mappings[task] = label_mappings[column]
|
30 |
+
num_labels_list.append(len(unique_values))
|
31 |
+
|
32 |
+
# Print the mappings for each task with dataset type prefix
|
33 |
+
for task, mapping in task_label_mappings.items():
|
34 |
+
print(f"{dataset_type.capitalize()} mapping for {task}: {mapping}") # sanity check, for train/validation splits
|
35 |
+
|
36 |
+
# Save the task label mappings as a pickle file
|
37 |
+
with open(f"{config['results_dir']}/task_label_mappings.pkl", "wb") as f:
|
38 |
+
pickle.dump(task_label_mappings, f)
|
39 |
+
else:
|
40 |
+
# Load task label mappings from pickle file for test data
|
41 |
+
with open(f"{config['results_dir']}/task_label_mappings.pkl", "rb") as f:
|
42 |
+
task_label_mappings = pickle.load(f)
|
43 |
+
|
44 |
+
# Infer num_labels_list from task_label_mappings
|
45 |
+
for task, mapping in task_label_mappings.items():
|
46 |
+
num_labels_list.append(len(mapping))
|
47 |
+
|
48 |
+
# Store unique cell IDs in a separate dictionary
|
49 |
+
for idx, record in enumerate(dataset):
|
50 |
+
cell_id = record.get('unique_cell_id', idx)
|
51 |
+
cell_id_mapping[idx] = cell_id
|
52 |
+
|
53 |
+
# Transform records to the desired format
|
54 |
+
transformed_dataset = []
|
55 |
+
for idx, record in enumerate(dataset):
|
56 |
+
transformed_record = {}
|
57 |
+
transformed_record['input_ids'] = torch.tensor(record['input_ids'], dtype=torch.long)
|
58 |
+
|
59 |
+
# Use index-based cell ID for internal tracking
|
60 |
+
transformed_record['cell_id'] = idx
|
61 |
+
|
62 |
+
if not is_test:
|
63 |
+
# Prepare labels
|
64 |
+
label_dict = {}
|
65 |
+
for task, column in task_to_column.items():
|
66 |
+
label_value = record[column]
|
67 |
+
label_index = task_label_mappings[task][label_value]
|
68 |
+
label_dict[task] = label_index
|
69 |
+
transformed_record['label'] = label_dict
|
70 |
+
else:
|
71 |
+
# Create dummy labels for test data
|
72 |
+
label_dict = {task: -1 for task in config["task_names"]}
|
73 |
+
transformed_record['label'] = label_dict
|
74 |
+
|
75 |
+
transformed_dataset.append(transformed_record)
|
76 |
+
|
77 |
+
return transformed_dataset, cell_id_mapping, num_labels_list
|
78 |
+
except KeyError as e:
|
79 |
+
print(f"Missing configuration or dataset key: {e}")
|
80 |
+
except Exception as e:
|
81 |
+
print(f"An error occurred while loading or preprocessing data: {e}")
|
82 |
+
return None, None, None
|
83 |
+
|
84 |
+
def preload_and_process_data(config):
|
85 |
+
# Load and preprocess data once
|
86 |
+
train_dataset, train_cell_id_mapping, num_labels_list = load_and_preprocess_data(config["train_path"], config, dataset_type="train")
|
87 |
+
val_dataset, val_cell_id_mapping, _ = load_and_preprocess_data(config["val_path"], config, dataset_type="validation")
|
88 |
+
return train_dataset, train_cell_id_mapping, val_dataset, val_cell_id_mapping, num_labels_list
|
89 |
+
|
90 |
+
def get_data_loader(preprocessed_dataset, batch_size):
|
91 |
+
nproc = os.cpu_count() ### I/O operations
|
92 |
+
|
93 |
+
data_collator = DataCollatorForMultitaskCellClassification()
|
94 |
+
|
95 |
+
loader = DataLoader(preprocessed_dataset, batch_size=batch_size, shuffle=True,
|
96 |
+
collate_fn=data_collator, num_workers=nproc, pin_memory=True)
|
97 |
+
return loader
|
98 |
+
def preload_data(config):
|
99 |
+
# Preprocessing the data before the Optuna trials start
|
100 |
+
train_loader = get_data_loader("train", config)
|
101 |
+
val_loader = get_data_loader("val", config)
|
102 |
+
return train_loader, val_loader
|
103 |
+
|
104 |
+
def load_and_preprocess_test_data(config):
|
105 |
+
"""
|
106 |
+
Load and preprocess test data, treating it as unlabeled.
|
107 |
+
"""
|
108 |
+
return load_and_preprocess_data(config["test_path"], config, is_test=True)
|
109 |
+
|
110 |
+
def prepare_test_loader(config):
|
111 |
+
"""
|
112 |
+
Prepare DataLoader for the test dataset.
|
113 |
+
"""
|
114 |
+
test_dataset, cell_id_mapping, num_labels_list = load_and_preprocess_test_data(config)
|
115 |
+
test_loader = get_data_loader(test_dataset, config['batch_size'])
|
116 |
+
return test_loader, cell_id_mapping, num_labels_list
|
geneformer/mtl/eval_utils.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .imports import *
|
2 |
+
import pandas as pd
|
3 |
+
from .data import prepare_test_loader
|
4 |
+
from .model import GeneformerMultiTask
|
5 |
+
|
6 |
+
def evaluate_test_dataset(model, device, test_loader, cell_id_mapping, config):
|
7 |
+
task_pred_labels = {task_name: [] for task_name in config["task_names"]}
|
8 |
+
task_pred_probs = {task_name: [] for task_name in config["task_names"]}
|
9 |
+
cell_ids = []
|
10 |
+
|
11 |
+
# Load task label mappings from pickle file
|
12 |
+
with open(f"{config['results_dir']}/task_label_mappings.pkl", "rb") as f:
|
13 |
+
task_label_mappings = pickle.load(f)
|
14 |
+
|
15 |
+
model.eval()
|
16 |
+
with torch.no_grad():
|
17 |
+
for batch in test_loader:
|
18 |
+
input_ids = batch['input_ids'].to(device)
|
19 |
+
attention_mask = batch['attention_mask'].to(device)
|
20 |
+
_, logits, _ = model(input_ids, attention_mask)
|
21 |
+
for sample_idx in range(len(batch['input_ids'])):
|
22 |
+
cell_id = cell_id_mapping[batch['cell_id'][sample_idx].item()]
|
23 |
+
cell_ids.append(cell_id)
|
24 |
+
for i, task_name in enumerate(config["task_names"]):
|
25 |
+
pred_label = torch.argmax(logits[i][sample_idx], dim=-1).item()
|
26 |
+
pred_prob = torch.softmax(logits[i][sample_idx], dim=-1).cpu().numpy()
|
27 |
+
task_pred_labels[task_name].append(pred_label)
|
28 |
+
task_pred_probs[task_name].append(pred_prob)
|
29 |
+
|
30 |
+
# Save test predictions with cell IDs and probabilities to CSV
|
31 |
+
test_results_dir = config["results_dir"]
|
32 |
+
os.makedirs(test_results_dir, exist_ok=True)
|
33 |
+
test_preds_file = os.path.join(test_results_dir, "test_preds.csv")
|
34 |
+
|
35 |
+
rows = []
|
36 |
+
for sample_idx in range(len(cell_ids)):
|
37 |
+
row = {'Cell ID': cell_ids[sample_idx]}
|
38 |
+
for task_name in config["task_names"]:
|
39 |
+
row[f'{task_name} Prediction'] = task_pred_labels[task_name][sample_idx]
|
40 |
+
row[f'{task_name} Probabilities'] = ','.join(map(str, task_pred_probs[task_name][sample_idx]))
|
41 |
+
rows.append(row)
|
42 |
+
|
43 |
+
df = pd.DataFrame(rows)
|
44 |
+
df.to_csv(test_preds_file, index=False)
|
45 |
+
print(f"Test predictions saved to {test_preds_file}")
|
46 |
+
|
47 |
+
def load_and_evaluate_test_model(config):
|
48 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
49 |
+
test_loader, cell_id_mapping, num_labels_list = prepare_test_loader(config)
|
50 |
+
model_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask")
|
51 |
+
hyperparams_path = os.path.join(model_directory, "hyperparameters.json")
|
52 |
+
|
53 |
+
# Load the saved best hyperparameters
|
54 |
+
with open(hyperparams_path, 'r') as f:
|
55 |
+
best_hyperparams = json.load(f)
|
56 |
+
|
57 |
+
# Extract the task weights if present, otherwise set to None
|
58 |
+
task_weights = best_hyperparams.get("task_weights", None)
|
59 |
+
normalized_task_weights = task_weights if task_weights else []
|
60 |
+
|
61 |
+
# Print the loaded hyperparameters
|
62 |
+
print("Loaded hyperparameters:")
|
63 |
+
for param, value in best_hyperparams.items():
|
64 |
+
if param == "task_weights":
|
65 |
+
print(f"normalized_task_weights: {value}")
|
66 |
+
else:
|
67 |
+
print(f"{param}: {value}")
|
68 |
+
|
69 |
+
best_model_path = os.path.join(model_directory, "pytorch_model.bin")
|
70 |
+
best_model = GeneformerMultiTask(
|
71 |
+
config["pretrained_path"],
|
72 |
+
num_labels_list,
|
73 |
+
dropout_rate=best_hyperparams["dropout_rate"],
|
74 |
+
use_task_weights=config["use_task_weights"],
|
75 |
+
task_weights=normalized_task_weights
|
76 |
+
)
|
77 |
+
best_model.load_state_dict(torch.load(best_model_path))
|
78 |
+
best_model.to(device)
|
79 |
+
|
80 |
+
evaluate_test_dataset(best_model, device, test_loader, cell_id_mapping, config)
|
81 |
+
print("Evaluation completed.")
|
geneformer/mtl/imports.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pickle
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.optim as optim
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch.utils.data import DataLoader
|
8 |
+
|
9 |
+
from itertools import chain
|
10 |
+
import warnings
|
11 |
+
from enum import Enum
|
12 |
+
from typing import Dict, List, Optional, Union
|
13 |
+
import sys
|
14 |
+
import os
|
15 |
+
import json
|
16 |
+
import gc
|
17 |
+
import functools
|
18 |
+
import pandas as pd
|
19 |
+
|
20 |
+
from sklearn.metrics import f1_score, accuracy_score, roc_auc_score, roc_curve
|
21 |
+
from sklearn.preprocessing import LabelEncoder
|
22 |
+
from sklearn.model_selection import train_test_split
|
23 |
+
|
24 |
+
import optuna
|
25 |
+
|
26 |
+
from transformers import (
|
27 |
+
BertConfig,
|
28 |
+
BertModel,
|
29 |
+
AdamW,
|
30 |
+
get_linear_schedule_with_warmup,
|
31 |
+
get_cosine_schedule_with_warmup,
|
32 |
+
DataCollatorForTokenClassification,
|
33 |
+
SpecialTokensMixin,
|
34 |
+
BatchEncoding,
|
35 |
+
get_scheduler,
|
36 |
+
)
|
37 |
+
from transformers.utils import logging, to_py_obj
|
38 |
+
|
39 |
+
from datasets import load_from_disk
|
40 |
+
|
41 |
+
# local modules
|
42 |
+
from .data import preload_and_process_data, get_data_loader
|
43 |
+
from .model import GeneformerMultiTask
|
44 |
+
from .utils import save_model
|
45 |
+
from .optuna_utils import create_optuna_study
|
46 |
+
from .collators import DataCollatorForMultitaskCellClassification
|
geneformer/mtl/model.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertModel, BertConfig
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
class AttentionPool(nn.Module):
|
6 |
+
"""Attention-based pooling layer."""
|
7 |
+
def __init__(self, hidden_size):
|
8 |
+
super(AttentionPool, self).__init__()
|
9 |
+
self.attention_weights = nn.Parameter(torch.randn(hidden_size, 1))
|
10 |
+
nn.init.xavier_uniform_(self.attention_weights) # https://pytorch.org/docs/stable/nn.init.html
|
11 |
+
|
12 |
+
def forward(self, hidden_states):
|
13 |
+
attention_scores = torch.matmul(hidden_states, self.attention_weights)
|
14 |
+
attention_scores = torch.softmax(attention_scores, dim=1)
|
15 |
+
pooled_output = torch.sum(hidden_states * attention_scores, dim=1)
|
16 |
+
return pooled_output
|
17 |
+
|
18 |
+
class GeneformerMultiTask(nn.Module):
|
19 |
+
def __init__(self, pretrained_path, num_labels_list, dropout_rate=0.1, use_task_weights=False, task_weights=None, max_layers_to_freeze=0, use_attention_pooling=False):
|
20 |
+
super(GeneformerMultiTask, self).__init__()
|
21 |
+
self.config = BertConfig.from_pretrained(pretrained_path)
|
22 |
+
self.bert = BertModel(self.config)
|
23 |
+
self.num_labels_list = num_labels_list
|
24 |
+
self.use_task_weights = use_task_weights
|
25 |
+
self.dropout = nn.Dropout(dropout_rate)
|
26 |
+
self.use_attention_pooling = use_attention_pooling
|
27 |
+
|
28 |
+
if use_task_weights and (task_weights is None or len(task_weights) != len(num_labels_list)):
|
29 |
+
raise ValueError("Task weights must be defined and match the number of tasks when 'use_task_weights' is True.")
|
30 |
+
self.task_weights = task_weights if use_task_weights else [1.0] * len(num_labels_list)
|
31 |
+
|
32 |
+
# Freeze the specified initial layers
|
33 |
+
for layer in self.bert.encoder.layer[:max_layers_to_freeze]:
|
34 |
+
for param in layer.parameters():
|
35 |
+
param.requires_grad = False
|
36 |
+
|
37 |
+
self.attention_pool = AttentionPool(self.config.hidden_size) if use_attention_pooling else None
|
38 |
+
|
39 |
+
self.classification_heads = nn.ModuleList([
|
40 |
+
nn.Linear(self.config.hidden_size, num_labels) for num_labels in num_labels_list
|
41 |
+
])
|
42 |
+
# initialization of the classification heads: https://pytorch.org/docs/stable/nn.init.html
|
43 |
+
for head in self.classification_heads:
|
44 |
+
nn.init.xavier_uniform_(head.weight)
|
45 |
+
nn.init.zeros_(head.bias)
|
46 |
+
|
47 |
+
def forward(self, input_ids, attention_mask, labels=None):
|
48 |
+
try:
|
49 |
+
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
50 |
+
except Exception as e:
|
51 |
+
raise RuntimeError(f"Error during BERT forward pass: {e}")
|
52 |
+
|
53 |
+
sequence_output = outputs.last_hidden_state
|
54 |
+
|
55 |
+
try:
|
56 |
+
pooled_output = self.attention_pool(sequence_output) if self.use_attention_pooling else sequence_output[:, 0, :]
|
57 |
+
pooled_output = self.dropout(pooled_output)
|
58 |
+
except Exception as e:
|
59 |
+
raise RuntimeError(f"Error during pooling and dropout: {e}")
|
60 |
+
|
61 |
+
total_loss = 0
|
62 |
+
logits = []
|
63 |
+
losses = []
|
64 |
+
|
65 |
+
for task_id, (head, num_labels) in enumerate(zip(self.classification_heads, self.num_labels_list)):
|
66 |
+
try:
|
67 |
+
task_logits = head(pooled_output)
|
68 |
+
except Exception as e:
|
69 |
+
raise RuntimeError(f"Error during forward pass of classification head {task_id}: {e}")
|
70 |
+
|
71 |
+
logits.append(task_logits)
|
72 |
+
|
73 |
+
if labels is not None:
|
74 |
+
try:
|
75 |
+
loss_fct = nn.CrossEntropyLoss()
|
76 |
+
task_loss = loss_fct(task_logits.view(-1, num_labels), labels[task_id].view(-1))
|
77 |
+
if self.use_task_weights:
|
78 |
+
task_loss *= self.task_weights[task_id]
|
79 |
+
total_loss += task_loss
|
80 |
+
losses.append(task_loss.item())
|
81 |
+
except Exception as e:
|
82 |
+
raise RuntimeError(f"Error during loss computation for task {task_id}: {e}")
|
83 |
+
|
84 |
+
return total_loss, logits, losses if labels is not None else logits
|
geneformer/mtl/optuna_utils.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import optuna
|
2 |
+
from optuna.integration import TensorBoardCallback
|
3 |
+
|
4 |
+
def save_trial_callback(study, trial, trials_result_path):
|
5 |
+
with open(trials_result_path, "a") as f:
|
6 |
+
f.write(f"Trial {trial.number}: Value (F1 Macro): {trial.value}, Params: {trial.params}\n")
|
7 |
+
|
8 |
+
def create_optuna_study(objective, n_trials, trials_result_path, tensorboard_log_dir):
|
9 |
+
study = optuna.create_study(direction="maximize")
|
10 |
+
|
11 |
+
# init TensorBoard callback
|
12 |
+
tensorboard_callback = TensorBoardCallback(dirname=tensorboard_log_dir, metric_name="F1 Macro")
|
13 |
+
|
14 |
+
# callback and TensorBoard callback
|
15 |
+
callbacks = [
|
16 |
+
lambda study, trial: save_trial_callback(study, trial, trials_result_path),
|
17 |
+
tensorboard_callback
|
18 |
+
]
|
19 |
+
|
20 |
+
study.optimize(objective, n_trials=n_trials, callbacks=callbacks)
|
21 |
+
return study
|
geneformer/mtl/train.py
ADDED
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .imports import *
|
2 |
+
from .data import preload_and_process_data, get_data_loader
|
3 |
+
from .model import GeneformerMultiTask
|
4 |
+
from .utils import calculate_task_specific_metrics
|
5 |
+
from torch.utils.tensorboard import SummaryWriter
|
6 |
+
import pandas as pd
|
7 |
+
import os
|
8 |
+
from tqdm import tqdm
|
9 |
+
import random
|
10 |
+
import numpy as np
|
11 |
+
import torch
|
12 |
+
|
13 |
+
|
14 |
+
def set_seed(seed):
|
15 |
+
random.seed(seed)
|
16 |
+
np.random.seed(seed)
|
17 |
+
torch.manual_seed(seed)
|
18 |
+
torch.cuda.manual_seed_all(seed)
|
19 |
+
torch.backends.cudnn.deterministic = True
|
20 |
+
torch.backends.cudnn.benchmark = False
|
21 |
+
|
22 |
+
def initialize_wandb(config):
|
23 |
+
if config.get("use_wandb", False):
|
24 |
+
import wandb
|
25 |
+
wandb.init(project=config["wandb_project"], config=config)
|
26 |
+
print("Weights & Biases (wandb) initialized and will be used for logging.")
|
27 |
+
else:
|
28 |
+
print("Weights & Biases (wandb) is not enabled. Logging will use other methods.")
|
29 |
+
|
30 |
+
def create_model(config, num_labels_list, device):
|
31 |
+
model = GeneformerMultiTask(
|
32 |
+
config["pretrained_path"],
|
33 |
+
num_labels_list,
|
34 |
+
dropout_rate=config["dropout_rate"],
|
35 |
+
use_task_weights=config["use_task_weights"],
|
36 |
+
task_weights=config["task_weights"],
|
37 |
+
max_layers_to_freeze=config["max_layers_to_freeze"],
|
38 |
+
use_attention_pooling=config["use_attention_pooling"]
|
39 |
+
)
|
40 |
+
if config["use_data_parallel"]:
|
41 |
+
model = nn.DataParallel(model)
|
42 |
+
return model.to(device)
|
43 |
+
|
44 |
+
def setup_optimizer_and_scheduler(model, config, total_steps):
|
45 |
+
optimizer = AdamW(model.parameters(), lr=config["learning_rate"], weight_decay=config["weight_decay"])
|
46 |
+
warmup_steps = int(config["warmup_ratio"] * total_steps)
|
47 |
+
|
48 |
+
if config["lr_scheduler_type"] == "linear":
|
49 |
+
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps)
|
50 |
+
elif config["lr_scheduler_type"] == "cosine":
|
51 |
+
scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=total_steps, num_cycles=0.5)
|
52 |
+
|
53 |
+
return optimizer, scheduler
|
54 |
+
|
55 |
+
def train_epoch(model, train_loader, optimizer, scheduler, device, config, writer, epoch):
|
56 |
+
model.train()
|
57 |
+
progress_bar = tqdm(train_loader, desc=f"Epoch {epoch+1}/{config['epochs']}")
|
58 |
+
for batch_idx, batch in enumerate(progress_bar):
|
59 |
+
optimizer.zero_grad()
|
60 |
+
input_ids = batch['input_ids'].to(device)
|
61 |
+
attention_mask = batch['attention_mask'].to(device)
|
62 |
+
labels = [batch['labels'][task_name].to(device) for task_name in config["task_names"]]
|
63 |
+
|
64 |
+
loss, _, _ = model(input_ids, attention_mask, labels)
|
65 |
+
loss.backward()
|
66 |
+
|
67 |
+
if config["gradient_clipping"]:
|
68 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), config["max_grad_norm"])
|
69 |
+
|
70 |
+
optimizer.step()
|
71 |
+
scheduler.step()
|
72 |
+
|
73 |
+
writer.add_scalar('Training Loss', loss.item(), epoch * len(train_loader) + batch_idx)
|
74 |
+
if config.get("use_wandb", False):
|
75 |
+
wandb.log({'Training Loss': loss.item()})
|
76 |
+
|
77 |
+
# Update progress bar
|
78 |
+
progress_bar.set_postfix({'loss': f"{loss.item():.4f}"})
|
79 |
+
|
80 |
+
return loss.item() # Return the last batch loss
|
81 |
+
|
82 |
+
def validate_model(model, val_loader, device, config):
|
83 |
+
model.eval()
|
84 |
+
val_loss = 0.0
|
85 |
+
task_true_labels = {task_name: [] for task_name in config["task_names"]}
|
86 |
+
task_pred_labels = {task_name: [] for task_name in config["task_names"]}
|
87 |
+
task_pred_probs = {task_name: [] for task_name in config["task_names"]}
|
88 |
+
|
89 |
+
with torch.no_grad():
|
90 |
+
for batch in val_loader:
|
91 |
+
input_ids = batch['input_ids'].to(device)
|
92 |
+
attention_mask = batch['attention_mask'].to(device)
|
93 |
+
labels = [batch['labels'][task_name].to(device) for task_name in config["task_names"]]
|
94 |
+
loss, logits, _ = model(input_ids, attention_mask, labels)
|
95 |
+
val_loss += loss.item()
|
96 |
+
|
97 |
+
for sample_idx in range(len(batch['input_ids'])):
|
98 |
+
for i, task_name in enumerate(config["task_names"]):
|
99 |
+
true_label = batch['labels'][task_name][sample_idx].item()
|
100 |
+
pred_label = torch.argmax(logits[i][sample_idx], dim=-1).item()
|
101 |
+
pred_prob = torch.softmax(logits[i][sample_idx], dim=-1).cpu().numpy()
|
102 |
+
task_true_labels[task_name].append(true_label)
|
103 |
+
task_pred_labels[task_name].append(pred_label)
|
104 |
+
task_pred_probs[task_name].append(pred_prob)
|
105 |
+
|
106 |
+
val_loss /= len(val_loader)
|
107 |
+
return val_loss, task_true_labels, task_pred_labels, task_pred_probs
|
108 |
+
|
109 |
+
def log_metrics(task_metrics, val_loss, config, writer, epochs):
|
110 |
+
for task_name, metrics in task_metrics.items():
|
111 |
+
print(f"{task_name} - Validation F1 Macro: {metrics['f1']:.4f}, Validation Accuracy: {metrics['accuracy']:.4f}")
|
112 |
+
if config.get("use_wandb", False):
|
113 |
+
import wandb
|
114 |
+
wandb.log({
|
115 |
+
f'{task_name} Validation F1 Macro': metrics['f1'],
|
116 |
+
f'{task_name} Validation Accuracy': metrics['accuracy']
|
117 |
+
})
|
118 |
+
|
119 |
+
writer.add_scalar('Validation Loss', val_loss, epochs)
|
120 |
+
for task_name, metrics in task_metrics.items():
|
121 |
+
writer.add_scalar(f'{task_name} - Validation F1 Macro', metrics['f1'], epochs)
|
122 |
+
writer.add_scalar(f'{task_name} - Validation Accuracy', metrics['accuracy'], epochs)
|
123 |
+
|
124 |
+
def save_validation_predictions(val_cell_id_mapping, task_true_labels, task_pred_labels, task_pred_probs, config, trial_number=None):
|
125 |
+
if trial_number is not None:
|
126 |
+
trial_results_dir = os.path.join(config["results_dir"], f"trial_{trial_number}")
|
127 |
+
os.makedirs(trial_results_dir, exist_ok=True)
|
128 |
+
val_preds_file = os.path.join(trial_results_dir, "val_preds.csv")
|
129 |
+
else:
|
130 |
+
val_preds_file = os.path.join(config["results_dir"], "manual_run_val_preds.csv")
|
131 |
+
|
132 |
+
rows = []
|
133 |
+
for sample_idx in range(len(val_cell_id_mapping)):
|
134 |
+
row = {'Cell ID': val_cell_id_mapping[sample_idx]}
|
135 |
+
for task_name in config["task_names"]:
|
136 |
+
row[f'{task_name} True'] = task_true_labels[task_name][sample_idx]
|
137 |
+
row[f'{task_name} Pred'] = task_pred_labels[task_name][sample_idx]
|
138 |
+
row[f'{task_name} Probabilities'] = ','.join(map(str, task_pred_probs[task_name][sample_idx]))
|
139 |
+
rows.append(row)
|
140 |
+
|
141 |
+
df = pd.DataFrame(rows)
|
142 |
+
df.to_csv(val_preds_file, index=False)
|
143 |
+
print(f"Validation predictions saved to {val_preds_file}")
|
144 |
+
|
145 |
+
|
146 |
+
def train_model(config, device, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list):
|
147 |
+
set_seed(config["seed"])
|
148 |
+
initialize_wandb(config)
|
149 |
+
|
150 |
+
model = create_model(config, num_labels_list, device)
|
151 |
+
total_steps = len(train_loader) * config["epochs"]
|
152 |
+
optimizer, scheduler = setup_optimizer_and_scheduler(model, config, total_steps)
|
153 |
+
|
154 |
+
log_dir = os.path.join(config["tensorboard_log_dir"], "manual_run")
|
155 |
+
writer = SummaryWriter(log_dir=log_dir)
|
156 |
+
|
157 |
+
epoch_progress = tqdm(range(config["epochs"]), desc="Training Progress")
|
158 |
+
for epoch in epoch_progress:
|
159 |
+
last_loss = train_epoch(model, train_loader, optimizer, scheduler, device, config, writer, epoch)
|
160 |
+
epoch_progress.set_postfix({'last_loss': f"{last_loss:.4f}"})
|
161 |
+
|
162 |
+
val_loss, task_true_labels, task_pred_labels, task_pred_probs = validate_model(model, val_loader, device, config)
|
163 |
+
task_metrics = calculate_task_specific_metrics(task_true_labels, task_pred_labels)
|
164 |
+
|
165 |
+
log_metrics(task_metrics, val_loss, config, writer, config["epochs"])
|
166 |
+
writer.close()
|
167 |
+
|
168 |
+
save_validation_predictions(val_cell_id_mapping, task_true_labels, task_pred_labels, task_pred_probs, config)
|
169 |
+
|
170 |
+
if config.get("use_wandb", False):
|
171 |
+
import wandb
|
172 |
+
wandb.finish()
|
173 |
+
|
174 |
+
print(f"\nFinal Validation Loss: {val_loss:.4f}")
|
175 |
+
return val_loss, model # Return both the validation loss and the trained model
|
176 |
+
|
177 |
+
def objective(trial, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list, config, device):
|
178 |
+
set_seed(config["seed"]) # Set the seed before each trial
|
179 |
+
initialize_wandb(config)
|
180 |
+
|
181 |
+
# Hyperparameters
|
182 |
+
config["learning_rate"] = trial.suggest_float("learning_rate", config["hyperparameters"]["learning_rate"]["low"], config["hyperparameters"]["learning_rate"]["high"], log=config["hyperparameters"]["learning_rate"]["log"])
|
183 |
+
config["warmup_ratio"] = trial.suggest_float("warmup_ratio", config["hyperparameters"]["warmup_ratio"]["low"], config["hyperparameters"]["warmup_ratio"]["high"])
|
184 |
+
config["weight_decay"] = trial.suggest_float("weight_decay", config["hyperparameters"]["weight_decay"]["low"], config["hyperparameters"]["weight_decay"]["high"])
|
185 |
+
config["dropout_rate"] = trial.suggest_float("dropout_rate", config["hyperparameters"]["dropout_rate"]["low"], config["hyperparameters"]["dropout_rate"]["high"])
|
186 |
+
config["lr_scheduler_type"] = trial.suggest_categorical("lr_scheduler_type", config["hyperparameters"]["lr_scheduler_type"]["choices"])
|
187 |
+
config["use_attention_pooling"] = trial.suggest_categorical("use_attention_pooling", [True, False])
|
188 |
+
|
189 |
+
if config["use_task_weights"]:
|
190 |
+
config["task_weights"] = [trial.suggest_float(f"task_weight_{i}", config["hyperparameters"]["task_weights"]["low"], config["hyperparameters"]["task_weights"]["high"]) for i in range(len(num_labels_list))]
|
191 |
+
weight_sum = sum(config["task_weights"])
|
192 |
+
config["task_weights"] = [weight / weight_sum for weight in config["task_weights"]]
|
193 |
+
else:
|
194 |
+
config["task_weights"] = None
|
195 |
+
|
196 |
+
# Fix for max_layers_to_freeze
|
197 |
+
if isinstance(config["max_layers_to_freeze"], dict):
|
198 |
+
config["max_layers_to_freeze"] = trial.suggest_int("max_layers_to_freeze", config["max_layers_to_freeze"]["min"], config["max_layers_to_freeze"]["max"])
|
199 |
+
elif isinstance(config["max_layers_to_freeze"], int):
|
200 |
+
# If it's already an int, we don't need to suggest it
|
201 |
+
pass
|
202 |
+
else:
|
203 |
+
raise ValueError("Invalid type for max_layers_to_freeze. Expected dict or int.")
|
204 |
+
|
205 |
+
model = create_model(config, num_labels_list, device)
|
206 |
+
total_steps = len(train_loader) * config["epochs"]
|
207 |
+
optimizer, scheduler = setup_optimizer_and_scheduler(model, config, total_steps)
|
208 |
+
|
209 |
+
log_dir = os.path.join(config["tensorboard_log_dir"], f"trial_{trial.number}")
|
210 |
+
writer = SummaryWriter(log_dir=log_dir)
|
211 |
+
|
212 |
+
for epoch in range(config["epochs"]):
|
213 |
+
train_epoch(model, train_loader, optimizer, scheduler, device, config, writer, epoch)
|
214 |
+
|
215 |
+
val_loss, task_true_labels, task_pred_labels, task_pred_probs = validate_model(model, val_loader, device, config)
|
216 |
+
task_metrics = calculate_task_specific_metrics(task_true_labels, task_pred_labels)
|
217 |
+
|
218 |
+
log_metrics(task_metrics, val_loss, config, writer, config["epochs"])
|
219 |
+
writer.close()
|
220 |
+
|
221 |
+
save_validation_predictions(val_cell_id_mapping, task_true_labels, task_pred_labels, task_pred_probs, config, trial.number)
|
222 |
+
|
223 |
+
trial.set_user_attr("model_state_dict", model.state_dict())
|
224 |
+
trial.set_user_attr("task_weights", config["task_weights"])
|
225 |
+
|
226 |
+
trial.report(val_loss, config["epochs"])
|
227 |
+
|
228 |
+
if trial.should_prune():
|
229 |
+
raise optuna.TrialPruned()
|
230 |
+
|
231 |
+
if config.get("use_wandb", False):
|
232 |
+
import wandb
|
233 |
+
wandb.log({
|
234 |
+
"trial_number": trial.number,
|
235 |
+
"val_loss": val_loss,
|
236 |
+
**{f"{task_name}_f1": metrics['f1'] for task_name, metrics in task_metrics.items()},
|
237 |
+
**{f"{task_name}_accuracy": metrics['accuracy'] for task_name, metrics in task_metrics.items()},
|
238 |
+
**{k: v for k, v in config.items() if k in ["learning_rate", "warmup_ratio", "weight_decay", "dropout_rate", "lr_scheduler_type", "use_attention_pooling", "max_layers_to_freeze"]}
|
239 |
+
})
|
240 |
+
wandb.finish()
|
241 |
+
|
242 |
+
return val_loss
|
geneformer/mtl/train_utils.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .imports import *
|
2 |
+
from .data import preload_and_process_data, get_data_loader
|
3 |
+
from .train import objective, train_model
|
4 |
+
from .model import GeneformerMultiTask
|
5 |
+
from .utils import save_model
|
6 |
+
import random
|
7 |
+
|
8 |
+
def set_seed(seed):
|
9 |
+
random.seed(seed)
|
10 |
+
np.random.seed(seed)
|
11 |
+
torch.manual_seed(seed)
|
12 |
+
torch.cuda.manual_seed_all(seed)
|
13 |
+
torch.backends.cudnn.deterministic = True
|
14 |
+
torch.backends.cudnn.benchmark = False
|
15 |
+
|
16 |
+
def run_manual_tuning(config):
|
17 |
+
# Set seed for reproducibility
|
18 |
+
set_seed(config["seed"])
|
19 |
+
|
20 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
+
train_dataset, train_cell_id_mapping, val_dataset, val_cell_id_mapping, num_labels_list = preload_and_process_data(config)
|
22 |
+
train_loader = get_data_loader(train_dataset, config['batch_size'])
|
23 |
+
val_loader = get_data_loader(val_dataset, config['batch_size'])
|
24 |
+
|
25 |
+
# Print the manual hyperparameters being used
|
26 |
+
print("\nManual hyperparameters being used:")
|
27 |
+
for key, value in config["manual_hyperparameters"].items():
|
28 |
+
print(f"{key}: {value}")
|
29 |
+
print() # Add an empty line for better readability
|
30 |
+
|
31 |
+
# Use the manual hyperparameters
|
32 |
+
for key, value in config["manual_hyperparameters"].items():
|
33 |
+
config[key] = value
|
34 |
+
|
35 |
+
# Train the model
|
36 |
+
val_loss, trained_model = train_model(config, device, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list)
|
37 |
+
|
38 |
+
print(f"\nValidation loss with manual hyperparameters: {val_loss}")
|
39 |
+
|
40 |
+
# Save the trained model
|
41 |
+
model_save_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask")
|
42 |
+
save_model(trained_model, model_save_directory)
|
43 |
+
|
44 |
+
# Save the hyperparameters
|
45 |
+
hyperparams_to_save = {
|
46 |
+
**config["manual_hyperparameters"],
|
47 |
+
"dropout_rate": config["dropout_rate"],
|
48 |
+
"use_task_weights": config["use_task_weights"],
|
49 |
+
"task_weights": config["task_weights"],
|
50 |
+
"max_layers_to_freeze": config["max_layers_to_freeze"],
|
51 |
+
"use_attention_pooling": config["use_attention_pooling"]
|
52 |
+
}
|
53 |
+
hyperparams_path = os.path.join(model_save_directory, "hyperparameters.json")
|
54 |
+
with open(hyperparams_path, 'w') as f:
|
55 |
+
json.dump(hyperparams_to_save, f)
|
56 |
+
print(f"Manual hyperparameters saved to {hyperparams_path}")
|
57 |
+
|
58 |
+
return val_loss
|
59 |
+
|
60 |
+
def run_optuna_study(config):
|
61 |
+
# Set seed for reproducibility
|
62 |
+
set_seed(config["seed"])
|
63 |
+
|
64 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
65 |
+
train_dataset, train_cell_id_mapping, val_dataset, val_cell_id_mapping, num_labels_list = preload_and_process_data(config)
|
66 |
+
train_loader = get_data_loader(train_dataset, config['batch_size'])
|
67 |
+
val_loader = get_data_loader(val_dataset, config['batch_size'])
|
68 |
+
|
69 |
+
if config["use_manual_hyperparameters"]:
|
70 |
+
train_model(config, device, train_loader, val_loader, train_cell_id_mapping, val_cell_id_mapping, num_labels_list)
|
71 |
+
else:
|
72 |
+
objective_with_config_and_data = functools.partial(
|
73 |
+
objective,
|
74 |
+
train_loader=train_loader,
|
75 |
+
val_loader=val_loader,
|
76 |
+
train_cell_id_mapping=train_cell_id_mapping,
|
77 |
+
val_cell_id_mapping=val_cell_id_mapping,
|
78 |
+
num_labels_list=num_labels_list,
|
79 |
+
config=config,
|
80 |
+
device=device
|
81 |
+
)
|
82 |
+
|
83 |
+
study = optuna.create_study(
|
84 |
+
direction='minimize', # Minimize validation loss
|
85 |
+
study_name=config["study_name"],
|
86 |
+
#storage=config["storage"],
|
87 |
+
load_if_exists=True
|
88 |
+
)
|
89 |
+
|
90 |
+
study.optimize(
|
91 |
+
objective_with_config_and_data,
|
92 |
+
n_trials=config["n_trials"]
|
93 |
+
)
|
94 |
+
|
95 |
+
# After finding the best trial
|
96 |
+
best_params = study.best_trial.params
|
97 |
+
best_task_weights = study.best_trial.user_attrs["task_weights"]
|
98 |
+
print("Saving the best model and its hyperparameters...")
|
99 |
+
|
100 |
+
# Saving model as before
|
101 |
+
best_model = GeneformerMultiTask(
|
102 |
+
config["pretrained_path"],
|
103 |
+
num_labels_list,
|
104 |
+
dropout_rate=best_params["dropout_rate"],
|
105 |
+
use_task_weights=config["use_task_weights"],
|
106 |
+
task_weights=best_task_weights
|
107 |
+
)
|
108 |
+
|
109 |
+
# Get the best model state dictionary
|
110 |
+
best_model_state_dict = study.best_trial.user_attrs["model_state_dict"]
|
111 |
+
|
112 |
+
# Remove the "module." prefix from the state dictionary keys if present
|
113 |
+
best_model_state_dict = {k.replace("module.", ""): v for k, v in best_model_state_dict.items()}
|
114 |
+
|
115 |
+
# Load the modified state dictionary into the model, skipping unexpected keys
|
116 |
+
best_model.load_state_dict(best_model_state_dict, strict=False)
|
117 |
+
|
118 |
+
model_save_directory = os.path.join(config["model_save_path"], "GeneformerMultiTask")
|
119 |
+
save_model(best_model, model_save_directory)
|
120 |
+
|
121 |
+
# Additionally, save the best hyperparameters and task weights
|
122 |
+
hyperparams_path = os.path.join(model_save_directory, "hyperparameters.json")
|
123 |
+
|
124 |
+
with open(hyperparams_path, 'w') as f:
|
125 |
+
json.dump({**best_params, "task_weights": best_task_weights}, f)
|
126 |
+
print(f"Best hyperparameters and task weights saved to {hyperparams_path}")
|
geneformer/mtl/utils.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .imports import *
|
2 |
+
from sklearn.metrics import f1_score, accuracy_score
|
3 |
+
from sklearn.preprocessing import LabelEncoder
|
4 |
+
from transformers import BertModel, BertConfig, AutoConfig
|
5 |
+
import os
|
6 |
+
import shutil
|
7 |
+
|
8 |
+
def save_model(model, model_save_directory):
|
9 |
+
if not os.path.exists(model_save_directory):
|
10 |
+
os.makedirs(model_save_directory)
|
11 |
+
|
12 |
+
# Get the state dict
|
13 |
+
if isinstance(model, nn.DataParallel):
|
14 |
+
model_state_dict = model.module.state_dict() # Use model.module to access the underlying model
|
15 |
+
else:
|
16 |
+
model_state_dict = model.state_dict()
|
17 |
+
|
18 |
+
# Remove the "module." prefix from the keys if present
|
19 |
+
model_state_dict = {k.replace("module.", ""): v for k, v in model_state_dict.items()}
|
20 |
+
|
21 |
+
model_save_path = os.path.join(model_save_directory, "pytorch_model.bin")
|
22 |
+
torch.save(model_state_dict, model_save_path)
|
23 |
+
|
24 |
+
# Save the model configuration
|
25 |
+
if isinstance(model, nn.DataParallel):
|
26 |
+
model.module.config.to_json_file(os.path.join(model_save_directory, "config.json"))
|
27 |
+
else:
|
28 |
+
model.config.to_json_file(os.path.join(model_save_directory, "config.json"))
|
29 |
+
|
30 |
+
print(f"Model and configuration saved to {model_save_directory}")
|
31 |
+
|
32 |
+
def calculate_task_specific_metrics(task_true_labels, task_pred_labels):
|
33 |
+
task_metrics = {}
|
34 |
+
for task_name in task_true_labels.keys():
|
35 |
+
true_labels = task_true_labels[task_name]
|
36 |
+
pred_labels = task_pred_labels[task_name]
|
37 |
+
f1 = f1_score(true_labels, pred_labels, average='macro')
|
38 |
+
accuracy = accuracy_score(true_labels, pred_labels)
|
39 |
+
task_metrics[task_name] = {'f1': f1, 'accuracy': accuracy}
|
40 |
+
return task_metrics
|
41 |
+
|
42 |
+
def calculate_combined_f1(combined_labels, combined_preds):
|
43 |
+
# Initialize the LabelEncoder
|
44 |
+
le = LabelEncoder()
|
45 |
+
|
46 |
+
# Fit and transform combined labels and predictions to numerical values
|
47 |
+
le.fit(combined_labels + combined_preds)
|
48 |
+
encoded_true_labels = le.transform(combined_labels)
|
49 |
+
encoded_pred_labels = le.transform(combined_preds)
|
50 |
+
|
51 |
+
# Print out the mapping for sanity check
|
52 |
+
print("\nLabel Encoder Mapping:")
|
53 |
+
for index, class_label in enumerate(le.classes_):
|
54 |
+
print(f"'{class_label}': {index}")
|
55 |
+
|
56 |
+
# Calculate accuracy
|
57 |
+
accuracy = accuracy_score(encoded_true_labels, encoded_pred_labels)
|
58 |
+
|
59 |
+
# Calculate F1 Macro score
|
60 |
+
f1 = f1_score(encoded_true_labels, encoded_pred_labels, average='macro')
|
61 |
+
|
62 |
+
return f1, accuracy
|
63 |
+
|
64 |
+
def save_model_without_heads(original_model_save_directory):
|
65 |
+
# Create a new directory for the model without heads
|
66 |
+
new_model_save_directory = original_model_save_directory + "_No_Heads"
|
67 |
+
if not os.path.exists(new_model_save_directory):
|
68 |
+
os.makedirs(new_model_save_directory)
|
69 |
+
|
70 |
+
# Load the model state dictionary
|
71 |
+
model_state_dict = torch.load(os.path.join(original_model_save_directory, "pytorch_model.bin"))
|
72 |
+
|
73 |
+
# Initialize a new BERT model without the classification heads
|
74 |
+
config = BertConfig.from_pretrained(os.path.join(original_model_save_directory, "config.json"))
|
75 |
+
model_without_heads = BertModel(config)
|
76 |
+
|
77 |
+
# Filter the state dict to exclude classification heads
|
78 |
+
model_without_heads_state_dict = {k: v for k, v in model_state_dict.items() if not k.startswith("classification_heads")}
|
79 |
+
|
80 |
+
# Load the filtered state dict into the model
|
81 |
+
model_without_heads.load_state_dict(model_without_heads_state_dict, strict=False)
|
82 |
+
|
83 |
+
# Save the model without heads
|
84 |
+
model_save_path = os.path.join(new_model_save_directory, "pytorch_model.bin")
|
85 |
+
torch.save(model_without_heads.state_dict(), model_save_path)
|
86 |
+
|
87 |
+
# Copy the configuration file
|
88 |
+
shutil.copy(os.path.join(original_model_save_directory, "config.json"), new_model_save_directory)
|
89 |
+
|
90 |
+
print(f"Model without classification heads saved to {new_model_save_directory}")
|
91 |
+
|
92 |
+
|
93 |
+
def get_layer_freeze_range(pretrained_path):
|
94 |
+
"""
|
95 |
+
Dynamically determines the number of layers to freeze based on the model depth from its configuration.
|
96 |
+
Args:
|
97 |
+
pretrained_path (str): Path to the pretrained model directory or model identifier.
|
98 |
+
Returns:
|
99 |
+
dict: A dictionary with 'min' and 'max' keys indicating the range of layers to freeze.
|
100 |
+
"""
|
101 |
+
if pretrained_path:
|
102 |
+
config = AutoConfig.from_pretrained(pretrained_path)
|
103 |
+
total_layers = config.num_hidden_layers
|
104 |
+
return {"min": 0, "max": total_layers - 1}
|
105 |
+
else:
|
106 |
+
return {"min": 0, "max": 0}
|
geneformer/mtl_classifier.py
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Geneformer multi-task cell classifier.
|
3 |
+
|
4 |
+
**Input data:**
|
5 |
+
|
6 |
+
| Single-cell transcriptomes as Geneformer rank value encodings with cell state labels for each task in Geneformer .dataset format (generated from single-cell RNAseq data by tokenizer.py). Must contain "unique_cell_id" column for logging.
|
7 |
+
|
8 |
+
**Usage:**
|
9 |
+
|
10 |
+
.. code-block :: python
|
11 |
+
|
12 |
+
>>> from geneformer import MTLClassifier
|
13 |
+
>>> mc = MTLClassifier(task_columns = ["task1", "task2"],
|
14 |
+
... study_name = "mtl",
|
15 |
+
... pretrained_path = "/path/pretrained/model",
|
16 |
+
... train_path = "/path/train/set",
|
17 |
+
... val_path = "/path/eval/set",
|
18 |
+
... test_path = "/path/test/set",
|
19 |
+
... model_save_path = "/results/directory/save_path",
|
20 |
+
... trials_result_path = "/results/directory/results.txt",
|
21 |
+
... results_dir = "/results/directory",
|
22 |
+
... tensorboard_log_dir = "/results/tblogdir",
|
23 |
+
... hyperparameters = hyperparameters)
|
24 |
+
>>> mc.run_optuna_study()
|
25 |
+
>>> mc.load_and_evaluate_test_model()
|
26 |
+
>>> mc.save_model_without_heads()
|
27 |
+
"""
|
28 |
+
|
29 |
+
import logging
|
30 |
+
import os
|
31 |
+
from .mtl import train_utils
|
32 |
+
from .mtl import utils
|
33 |
+
from .mtl import eval_utils
|
34 |
+
|
35 |
+
logger = logging.getLogger(__name__)
|
36 |
+
|
37 |
+
|
38 |
+
class MTLClassifier:
|
39 |
+
valid_option_dict = {
|
40 |
+
"task_columns": {list},
|
41 |
+
"train_path": {None, str},
|
42 |
+
"val_path": {None, str},
|
43 |
+
"test_path": {None, str},
|
44 |
+
"pretrained_path": {None, str},
|
45 |
+
"model_save_path": {None, str},
|
46 |
+
"results_dir": {None, str},
|
47 |
+
"batch_size": {None, int},
|
48 |
+
"n_trials": {None, int},
|
49 |
+
"study_name": {None, str},
|
50 |
+
"max_layers_to_freeze": {None, dict},
|
51 |
+
"epochs": {None, int},
|
52 |
+
"tensorboard_log_dir": {None, str},
|
53 |
+
"use_data_parallel": {None, bool},
|
54 |
+
"use_attention_pooling": {None, bool},
|
55 |
+
"use_task_weights": {None, bool},
|
56 |
+
"hyperparameters": {None, dict},
|
57 |
+
"manual_hyperparameters": {None, dict},
|
58 |
+
"use_manual_hyperparameters": {None, bool},
|
59 |
+
"use_wandb": {None, bool},
|
60 |
+
"wandb_project": {None, str},
|
61 |
+
"gradient_clipping": {None, bool},
|
62 |
+
"max_grad_norm": {None, int, float},
|
63 |
+
"seed": {None, int},
|
64 |
+
"trials_result_path": {None, str},
|
65 |
+
}
|
66 |
+
|
67 |
+
def __init__(
|
68 |
+
self,
|
69 |
+
task_columns=None,
|
70 |
+
train_path=None,
|
71 |
+
val_path=None,
|
72 |
+
test_path=None,
|
73 |
+
pretrained_path=None,
|
74 |
+
model_save_path=None,
|
75 |
+
results_dir=None,
|
76 |
+
trials_result_path=None,
|
77 |
+
batch_size=4,
|
78 |
+
n_trials=15,
|
79 |
+
study_name="mtl",
|
80 |
+
max_layers_to_freeze=None,
|
81 |
+
epochs=1,
|
82 |
+
tensorboard_log_dir="/results/tblogdir",
|
83 |
+
use_data_parallel=False,
|
84 |
+
use_attention_pooling=True,
|
85 |
+
use_task_weights=True,
|
86 |
+
hyperparameters=None, # Default is None
|
87 |
+
manual_hyperparameters=None, # Default is None
|
88 |
+
use_manual_hyperparameters=False, # Default is False
|
89 |
+
use_wandb=False,
|
90 |
+
wandb_project=None,
|
91 |
+
gradient_clipping=False,
|
92 |
+
max_grad_norm=None,
|
93 |
+
seed=42 # Default seed value
|
94 |
+
):
|
95 |
+
|
96 |
+
"""
|
97 |
+
Initialize Geneformer multi-task classifier.
|
98 |
+
**Parameters:**
|
99 |
+
task_columns : list
|
100 |
+
| List of tasks for cell state classification
|
101 |
+
| Input data columns are labeled with corresponding task names
|
102 |
+
study_name : None, str
|
103 |
+
| Study name for labeling output files
|
104 |
+
pretrained_path : None, str
|
105 |
+
| Path to pretrained model
|
106 |
+
train_path : None, str
|
107 |
+
| Path to training dataset with task columns and "unique_cell_id" column
|
108 |
+
val_path : None, str
|
109 |
+
| Path to validation dataset with task columns and "unique_cell_id" column
|
110 |
+
test_path : None, str
|
111 |
+
| Path to test dataset with task columns and "unique_cell_id" column
|
112 |
+
model_save_path : None, str
|
113 |
+
| Path to directory to save output model (either full model or model without heads)
|
114 |
+
trials_result_path : None, str
|
115 |
+
| Path to directory to save hyperparameter tuning trial results
|
116 |
+
results_dir : None, str
|
117 |
+
| Path to directory to save results
|
118 |
+
tensorboard_log_dir : None, str
|
119 |
+
| Path to directory for Tensorboard logging results
|
120 |
+
use_data_parallel : None, bool
|
121 |
+
| Whether to use data parallelization
|
122 |
+
use_attention_pooling : None, bool
|
123 |
+
| Whether to use attention pooling
|
124 |
+
use_task_weights : None, bool
|
125 |
+
| Whether to use task weights
|
126 |
+
batch_size : None, int
|
127 |
+
| Batch size to use
|
128 |
+
n_trials : None, int
|
129 |
+
| Number of trials for hyperparameter tuning
|
130 |
+
epochs : None, int
|
131 |
+
| Number of epochs for training
|
132 |
+
max_layers_to_freeze : None, dict
|
133 |
+
| Dictionary with keys "min" and "max" indicating the min and max layers to freeze from fine-tuning (int)
|
134 |
+
| 0: no layers will be frozen; 2: first two layers will be frozen; etc.
|
135 |
+
hyperparameters : None, dict
|
136 |
+
| Dictionary of categorical max and min for each hyperparameter for tuning
|
137 |
+
| For example:
|
138 |
+
| {"learning_rate": {"type":"float", "low":"1e-5", "high":"1e-3", "log":True}, "task_weights": {...}, ...}
|
139 |
+
manual_hyperparameters : None, dict
|
140 |
+
| Dictionary of manually set value for each hyperparameter
|
141 |
+
| For example:
|
142 |
+
| {"learning_rate": 0.001, "task_weights": [1, 1], ...}
|
143 |
+
use_manual_hyperparameters : None, bool
|
144 |
+
| Whether to use manually set hyperparameters
|
145 |
+
use_wandb : None, bool
|
146 |
+
| Whether to use Weights & Biases for logging
|
147 |
+
wandb_project : None, str
|
148 |
+
| Weights & Biases project name
|
149 |
+
gradient_clipping : None, bool
|
150 |
+
| Whether to use gradient clipping
|
151 |
+
max_grad_norm : None, int, float
|
152 |
+
| Maximum norm for gradient clipping
|
153 |
+
seed : None, int
|
154 |
+
| Random seed
|
155 |
+
"""
|
156 |
+
|
157 |
+
self.task_columns = task_columns
|
158 |
+
self.train_path = train_path
|
159 |
+
self.val_path = val_path
|
160 |
+
self.test_path = test_path
|
161 |
+
self.pretrained_path = pretrained_path
|
162 |
+
self.model_save_path = model_save_path
|
163 |
+
self.results_dir = results_dir
|
164 |
+
self.trials_result_path = trials_result_path
|
165 |
+
self.batch_size = batch_size
|
166 |
+
self.n_trials = n_trials
|
167 |
+
self.study_name = study_name
|
168 |
+
|
169 |
+
if max_layers_to_freeze is None:
|
170 |
+
# Dynamically determine the range of layers to freeze
|
171 |
+
layer_freeze_range = utils.get_layer_freeze_range(pretrained_path)
|
172 |
+
self.max_layers_to_freeze = {"min": 1, "max": layer_freeze_range['max']}
|
173 |
+
else:
|
174 |
+
self.max_layers_to_freeze = max_layers_to_freeze
|
175 |
+
|
176 |
+
self.epochs = epochs
|
177 |
+
self.tensorboard_log_dir = tensorboard_log_dir
|
178 |
+
self.use_data_parallel = use_data_parallel
|
179 |
+
self.use_attention_pooling = use_attention_pooling
|
180 |
+
self.use_task_weights = use_task_weights
|
181 |
+
self.hyperparameters = hyperparameters if hyperparameters is not None else {
|
182 |
+
"learning_rate": {
|
183 |
+
"type": "float",
|
184 |
+
"low": 1e-5,
|
185 |
+
"high": 1e-3,
|
186 |
+
"log": True
|
187 |
+
},
|
188 |
+
"warmup_ratio": {
|
189 |
+
"type": "float",
|
190 |
+
"low": 0.005,
|
191 |
+
"high": 0.01
|
192 |
+
},
|
193 |
+
"weight_decay": {
|
194 |
+
"type": "float",
|
195 |
+
"low": 0.01,
|
196 |
+
"high": 0.1
|
197 |
+
},
|
198 |
+
"dropout_rate": {
|
199 |
+
"type": "float",
|
200 |
+
"low": 0.0,
|
201 |
+
"high": 0.7
|
202 |
+
},
|
203 |
+
"lr_scheduler_type": {
|
204 |
+
"type": "categorical",
|
205 |
+
"choices": ["cosine"]
|
206 |
+
},
|
207 |
+
"task_weights": {
|
208 |
+
"type": "float",
|
209 |
+
"low": 0.1,
|
210 |
+
"high": 2.0
|
211 |
+
}
|
212 |
+
}
|
213 |
+
self.manual_hyperparameters = manual_hyperparameters if manual_hyperparameters is not None else {
|
214 |
+
"learning_rate": 0.001,
|
215 |
+
"warmup_ratio": 0.01,
|
216 |
+
"weight_decay": 0.1,
|
217 |
+
"dropout_rate": 0.1,
|
218 |
+
"lr_scheduler_type": "cosine",
|
219 |
+
"use_attention_pooling": False,
|
220 |
+
"task_weights": [1, 1],
|
221 |
+
"max_layers_to_freeze": 2
|
222 |
+
}
|
223 |
+
self.use_manual_hyperparameters = use_manual_hyperparameters
|
224 |
+
self.use_wandb = use_wandb
|
225 |
+
self.wandb_project = wandb_project
|
226 |
+
self.gradient_clipping = gradient_clipping
|
227 |
+
self.max_grad_norm = max_grad_norm
|
228 |
+
self.seed = seed
|
229 |
+
|
230 |
+
if self.use_manual_hyperparameters:
|
231 |
+
logger.warning(
|
232 |
+
"Hyperparameter tuning is highly recommended for optimal results."
|
233 |
+
)
|
234 |
+
|
235 |
+
self.validate_options()
|
236 |
+
|
237 |
+
# set up output directories
|
238 |
+
if self.results_dir is not None:
|
239 |
+
self.trials_results_path = f"{self.results_dir}/results.txt".replace("//","/")
|
240 |
+
|
241 |
+
for output_dir in [self.model_save_path, self.results_dir]:
|
242 |
+
if not os.path.exists(output_dir):
|
243 |
+
os.makedirs(output_dir)
|
244 |
+
|
245 |
+
self.config = {key: value for key, value in self.__dict__.items() if key in self.valid_option_dict}
|
246 |
+
|
247 |
+
def validate_options(self):
|
248 |
+
# confirm arguments are within valid options and compatible with each other
|
249 |
+
for attr_name, valid_options in self.valid_option_dict.items():
|
250 |
+
attr_value = self.__dict__[attr_name]
|
251 |
+
if not isinstance(attr_value, (list, dict)):
|
252 |
+
if attr_value in valid_options:
|
253 |
+
continue
|
254 |
+
valid_type = False
|
255 |
+
for option in valid_options:
|
256 |
+
if (option in [int, float, list, dict, bool, str]) and isinstance(
|
257 |
+
attr_value, option
|
258 |
+
):
|
259 |
+
valid_type = True
|
260 |
+
break
|
261 |
+
if valid_type:
|
262 |
+
continue
|
263 |
+
logger.error(
|
264 |
+
f"Invalid option for {attr_name}. "
|
265 |
+
f"Valid options for {attr_name}: {valid_options}"
|
266 |
+
)
|
267 |
+
raise ValueError(f"Invalid option for {attr_name}. Valid options for {attr_name}: {valid_options}")
|
268 |
+
|
269 |
+
def run_manual_tuning(self):
|
270 |
+
"""
|
271 |
+
Manual hyperparameter tuning and multi-task fine-tuning of pretrained model.
|
272 |
+
"""
|
273 |
+
required_variable_names = ["train_path", "val_path", "pretrained_path", "model_save_path", "results_dir"]
|
274 |
+
required_variables = [self.train_path, self.val_path, self.pretrained_path, self.model_save_path, self.results_dir]
|
275 |
+
req_var_dict = dict(zip(required_variable_names, required_variables))
|
276 |
+
self.validate_additional_options(req_var_dict)
|
277 |
+
|
278 |
+
if not self.use_manual_hyperparameters:
|
279 |
+
raise ValueError("Manual hyperparameters are not enabled. Set use_manual_hyperparameters to True.")
|
280 |
+
|
281 |
+
# Ensure manual_hyperparameters are set in the config
|
282 |
+
self.config["manual_hyperparameters"] = self.manual_hyperparameters
|
283 |
+
self.config["use_manual_hyperparameters"] = True
|
284 |
+
|
285 |
+
train_utils.run_manual_tuning(self.config)
|
286 |
+
|
287 |
+
def validate_additional_options(self, req_var_dict):
|
288 |
+
missing_variable = False
|
289 |
+
for variable_name, variable in req_var_dict.items():
|
290 |
+
if variable is None:
|
291 |
+
logger.warning(
|
292 |
+
f"Please provide value to MTLClassifier for required variable {variable_name}"
|
293 |
+
)
|
294 |
+
missing_variable = True
|
295 |
+
if missing_variable is True:
|
296 |
+
raise ValueError("Missing required variables for MTLClassifier")
|
297 |
+
|
298 |
+
def run_optuna_study(
|
299 |
+
self,
|
300 |
+
):
|
301 |
+
"""
|
302 |
+
Hyperparameter optimization and/or multi-task fine-tuning of pretrained model.
|
303 |
+
"""
|
304 |
+
|
305 |
+
required_variable_names = ["train_path", "val_path", "pretrained_path", "model_save_path", "results_dir"]
|
306 |
+
required_variables = [self.train_path, self.val_path, self.pretrained_path, self.model_save_path, self.results_dir]
|
307 |
+
req_var_dict = dict(zip(required_variable_names, required_variables))
|
308 |
+
self.validate_additional_options(req_var_dict)
|
309 |
+
|
310 |
+
train_utils.run_optuna_study(self.config)
|
311 |
+
|
312 |
+
def load_and_evaluate_test_model(
|
313 |
+
self,
|
314 |
+
):
|
315 |
+
"""
|
316 |
+
Loads previously fine-tuned multi-task model and evaluates on test data.
|
317 |
+
"""
|
318 |
+
|
319 |
+
required_variable_names = ["test_path", "model_save_path", "results_dir"]
|
320 |
+
required_variables = [self.test_path, self.model_save_path, self.results_dir]
|
321 |
+
req_var_dict = dict(zip(required_variable_names, required_variables))
|
322 |
+
self.validate_additional_options(req_var_dict)
|
323 |
+
|
324 |
+
eval_utils.load_and_evaluate_test_model(self.config)
|
325 |
+
|
326 |
+
def save_model_without_heads(
|
327 |
+
self,
|
328 |
+
):
|
329 |
+
"""
|
330 |
+
Save previously fine-tuned multi-task model without classification heads.
|
331 |
+
"""
|
332 |
+
|
333 |
+
required_variable_names = ["model_save_path"]
|
334 |
+
required_variables = [self.model_save_path]
|
335 |
+
req_var_dict = dict(zip(required_variable_names, required_variables))
|
336 |
+
self.validate_additional_options(req_var_dict)
|
337 |
+
|
338 |
+
utils.save_model_without_heads(os.path.join(self.model_save_path, "GeneformerMultiTask"))
|
geneformer/perturber_utils.py
CHANGED
@@ -12,13 +12,17 @@ import pandas as pd
|
|
12 |
import seaborn as sns
|
13 |
import torch
|
14 |
from datasets import Dataset, load_from_disk
|
|
|
15 |
from transformers import (
|
16 |
BertForMaskedLM,
|
17 |
BertForSequenceClassification,
|
18 |
BertForTokenClassification,
|
|
|
19 |
)
|
20 |
|
21 |
-
|
|
|
|
|
22 |
|
23 |
|
24 |
logger = logging.getLogger(__name__)
|
@@ -111,17 +115,49 @@ def slice_by_inds_to_perturb(filtered_input_data, cell_inds_to_perturb):
|
|
111 |
|
112 |
|
113 |
# load model to GPU
|
114 |
-
def load_model(model_type, num_classes, model_directory, mode):
|
|
|
|
|
|
|
|
|
115 |
if mode == "eval":
|
116 |
output_hidden_states = True
|
117 |
elif mode == "train":
|
118 |
output_hidden_states = False
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
if model_type == "Pretrained":
|
121 |
model = BertForMaskedLM.from_pretrained(
|
122 |
model_directory,
|
123 |
output_hidden_states=output_hidden_states,
|
124 |
output_attentions=False,
|
|
|
125 |
)
|
126 |
elif model_type == "GeneClassifier":
|
127 |
model = BertForTokenClassification.from_pretrained(
|
@@ -129,6 +165,7 @@ def load_model(model_type, num_classes, model_directory, mode):
|
|
129 |
num_labels=num_classes,
|
130 |
output_hidden_states=output_hidden_states,
|
131 |
output_attentions=False,
|
|
|
132 |
)
|
133 |
elif model_type == "CellClassifier":
|
134 |
model = BertForSequenceClassification.from_pretrained(
|
@@ -136,11 +173,24 @@ def load_model(model_type, num_classes, model_directory, mode):
|
|
136 |
num_labels=num_classes,
|
137 |
output_hidden_states=output_hidden_states,
|
138 |
output_attentions=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
)
|
140 |
# if eval mode, put the model in eval mode for fwd pass
|
141 |
if mode == "eval":
|
142 |
model.eval()
|
143 |
-
|
|
|
|
|
|
|
|
|
144 |
return model
|
145 |
|
146 |
|
@@ -222,27 +272,47 @@ def overexpress_indices(example):
|
|
222 |
indices = example["perturb_index"]
|
223 |
if any(isinstance(el, list) for el in indices):
|
224 |
indices = flatten_list(indices)
|
225 |
-
|
226 |
-
|
227 |
-
|
|
|
228 |
example["length"] = len(example["input_ids"])
|
229 |
return example
|
230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
# for genes_to_perturb = list of genes to overexpress that are not necessarily expressed in cell
|
233 |
-
def overexpress_tokens(example, max_len):
|
234 |
# -100 indicates tokens to overexpress are not present in rank value encoding
|
235 |
if example["perturb_index"] != [-100]:
|
236 |
example = delete_indices(example)
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
242 |
# truncate to max input size, must also truncate original emb to be comparable
|
243 |
if len(example["input_ids"]) > max_len:
|
244 |
-
|
245 |
-
|
|
|
|
|
246 |
example["length"] = len(example["input_ids"])
|
247 |
return example
|
248 |
|
@@ -259,6 +329,13 @@ def truncate_by_n_overflow(example):
|
|
259 |
example["length"] = len(example["input_ids"])
|
260 |
return example
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
|
263 |
def remove_indices_from_emb(emb, indices_to_remove, gene_dim):
|
264 |
# indices_to_remove is list of indices to remove
|
@@ -392,7 +469,81 @@ def make_perturbation_batch(
|
|
392 |
return perturbation_dataset, indices_to_perturb
|
393 |
|
394 |
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
# so that only non-perturbed gene embeddings are compared to each other
|
397 |
# in original or perturbed context
|
398 |
def make_comparison_batch(original_emb_batch, indices_to_perturb, perturb_group):
|
@@ -589,9 +740,10 @@ def quant_cos_sims(
|
|
589 |
cos = torch.nn.CosineSimilarity(dim=1)
|
590 |
|
591 |
# if emb_mode == "gene", can only calculate gene cos sims
|
592 |
-
# against original cell
|
593 |
if cell_states_to_model is None or emb_mode == "gene":
|
594 |
cos_sims = cos(perturbation_emb, original_emb).to("cuda")
|
|
|
595 |
elif cell_states_to_model is not None and emb_mode == "cell":
|
596 |
possible_states = get_possible_states(cell_states_to_model)
|
597 |
cos_sims = dict(zip(possible_states, [[] for _ in range(len(possible_states))]))
|
@@ -758,4 +910,4 @@ class GeneIdHandler:
|
|
758 |
return self.ens_to_symbol(self.token_to_ens(token))
|
759 |
|
760 |
def symbol_to_token(self, symbol):
|
761 |
-
return self.ens_to_token(self.symbol_to_ens(symbol))
|
|
|
12 |
import seaborn as sns
|
13 |
import torch
|
14 |
from datasets import Dataset, load_from_disk
|
15 |
+
from peft import LoraConfig, get_peft_model
|
16 |
from transformers import (
|
17 |
BertForMaskedLM,
|
18 |
BertForSequenceClassification,
|
19 |
BertForTokenClassification,
|
20 |
+
BitsAndBytesConfig,
|
21 |
)
|
22 |
|
23 |
+
GENE_MEDIAN_FILE = Path(__file__).parent / "gene_median_dictionary.pkl"
|
24 |
+
TOKEN_DICTIONARY_FILE = Path(__file__).parent / "token_dictionary.pkl"
|
25 |
+
ENSEMBL_DICTIONARY_FILE = Path(__file__).parent / "gene_name_id_dict.pkl"
|
26 |
|
27 |
|
28 |
logger = logging.getLogger(__name__)
|
|
|
115 |
|
116 |
|
117 |
# load model to GPU
|
118 |
+
def load_model(model_type, num_classes, model_directory, mode, quantize=False):
|
119 |
+
if model_type == "MTLCellClassifier-Quantized":
|
120 |
+
model_type = "MTLCellClassifier"
|
121 |
+
quantize = True
|
122 |
+
|
123 |
if mode == "eval":
|
124 |
output_hidden_states = True
|
125 |
elif mode == "train":
|
126 |
output_hidden_states = False
|
127 |
|
128 |
+
if quantize is True:
|
129 |
+
if model_type == "MTLCellClassifier":
|
130 |
+
quantize = {
|
131 |
+
"peft_config": None,
|
132 |
+
"bnb_config": BitsAndBytesConfig(
|
133 |
+
load_in_8bit=True,
|
134 |
+
)
|
135 |
+
}
|
136 |
+
else:
|
137 |
+
quantize = {
|
138 |
+
"peft_config": LoraConfig(
|
139 |
+
lora_alpha=128,
|
140 |
+
lora_dropout=0.1,
|
141 |
+
r=64,
|
142 |
+
bias="none",
|
143 |
+
task_type="TokenClassification",
|
144 |
+
),
|
145 |
+
"bnb_config": BitsAndBytesConfig(
|
146 |
+
load_in_4bit=True,
|
147 |
+
bnb_4bit_use_double_quant=True,
|
148 |
+
bnb_4bit_quant_type="nf4",
|
149 |
+
bnb_4bit_compute_dtype=torch.bfloat16
|
150 |
+
)
|
151 |
+
}
|
152 |
+
elif quantize is False:
|
153 |
+
quantize = {"bnb_config": None}
|
154 |
+
|
155 |
if model_type == "Pretrained":
|
156 |
model = BertForMaskedLM.from_pretrained(
|
157 |
model_directory,
|
158 |
output_hidden_states=output_hidden_states,
|
159 |
output_attentions=False,
|
160 |
+
quantization_config=quantize["bnb_config"],
|
161 |
)
|
162 |
elif model_type == "GeneClassifier":
|
163 |
model = BertForTokenClassification.from_pretrained(
|
|
|
165 |
num_labels=num_classes,
|
166 |
output_hidden_states=output_hidden_states,
|
167 |
output_attentions=False,
|
168 |
+
quantization_config=quantize["bnb_config"],
|
169 |
)
|
170 |
elif model_type == "CellClassifier":
|
171 |
model = BertForSequenceClassification.from_pretrained(
|
|
|
173 |
num_labels=num_classes,
|
174 |
output_hidden_states=output_hidden_states,
|
175 |
output_attentions=False,
|
176 |
+
quantization_config=quantize["bnb_config"],
|
177 |
+
)
|
178 |
+
elif model_type == "MTLCellClassifier":
|
179 |
+
model = BertForMaskedLM.from_pretrained(
|
180 |
+
model_directory,
|
181 |
+
num_labels=num_classes,
|
182 |
+
output_hidden_states=output_hidden_states,
|
183 |
+
output_attentions=False,
|
184 |
+
quantization_config=quantize["bnb_config"],
|
185 |
)
|
186 |
# if eval mode, put the model in eval mode for fwd pass
|
187 |
if mode == "eval":
|
188 |
model.eval()
|
189 |
+
if (quantize is False) or (quantize == {'bnb_config': None}) or (model_type == "MTLCellClassifier"):
|
190 |
+
model = model.to("cuda")
|
191 |
+
else:
|
192 |
+
model.enable_input_require_grads()
|
193 |
+
model = get_peft_model(model, quantize["peft_config"])
|
194 |
return model
|
195 |
|
196 |
|
|
|
272 |
indices = example["perturb_index"]
|
273 |
if any(isinstance(el, list) for el in indices):
|
274 |
indices = flatten_list(indices)
|
275 |
+
insert_pos = 0
|
276 |
+
for index in sorted(indices, reverse=False):
|
277 |
+
example["input_ids"].insert(insert_pos, example["input_ids"].pop(index))
|
278 |
+
insert_pos += 1
|
279 |
example["length"] = len(example["input_ids"])
|
280 |
return example
|
281 |
|
282 |
+
# if CLS token present, move to 1st rather than 0th position
|
283 |
+
def overexpress_indices_special(example):
|
284 |
+
indices = example["perturb_index"]
|
285 |
+
if any(isinstance(el, list) for el in indices):
|
286 |
+
indices = flatten_list(indices)
|
287 |
+
insert_pos = 1 # Insert starting after CLS token
|
288 |
+
for index in sorted(indices, reverse=False):
|
289 |
+
example["input_ids"].insert(insert_pos, example["input_ids"].pop(index))
|
290 |
+
insert_pos += 1
|
291 |
+
example["length"] = len(example["input_ids"])
|
292 |
+
return example
|
293 |
|
294 |
# for genes_to_perturb = list of genes to overexpress that are not necessarily expressed in cell
|
295 |
+
def overexpress_tokens(example, max_len, special_token):
|
296 |
# -100 indicates tokens to overexpress are not present in rank value encoding
|
297 |
if example["perturb_index"] != [-100]:
|
298 |
example = delete_indices(example)
|
299 |
+
if special_token:
|
300 |
+
[
|
301 |
+
example["input_ids"].insert(1, token)
|
302 |
+
for token in example["tokens_to_perturb"][::-1]
|
303 |
+
]
|
304 |
+
else:
|
305 |
+
[
|
306 |
+
example["input_ids"].insert(0, token)
|
307 |
+
for token in example["tokens_to_perturb"][::-1]
|
308 |
+
]
|
309 |
|
310 |
# truncate to max input size, must also truncate original emb to be comparable
|
311 |
if len(example["input_ids"]) > max_len:
|
312 |
+
if special_token:
|
313 |
+
example["input_ids"] = example["input_ids"][0:max_len-1]+[example["input_ids"][-1]]
|
314 |
+
else:
|
315 |
+
example["input_ids"] = example["input_ids"][0:max_len]
|
316 |
example["length"] = len(example["input_ids"])
|
317 |
return example
|
318 |
|
|
|
329 |
example["length"] = len(example["input_ids"])
|
330 |
return example
|
331 |
|
332 |
+
def truncate_by_n_overflow_special(example):
|
333 |
+
if example["n_overflow"] > 0:
|
334 |
+
new_max_len = example["length"] - example["n_overflow"]
|
335 |
+
example["input_ids"] = example["input_ids"][0:new_max_len-1]+[example["input_ids"][-1]]
|
336 |
+
example["length"] = len(example["input_ids"])
|
337 |
+
return example
|
338 |
+
|
339 |
|
340 |
def remove_indices_from_emb(emb, indices_to_remove, gene_dim):
|
341 |
# indices_to_remove is list of indices to remove
|
|
|
469 |
return perturbation_dataset, indices_to_perturb
|
470 |
|
471 |
|
472 |
+
def make_perturbation_batch_special(
|
473 |
+
example_cell, perturb_type, tokens_to_perturb, anchor_token, combo_lvl, num_proc
|
474 |
+
) -> tuple[Dataset, List[int]]:
|
475 |
+
if combo_lvl == 0 and tokens_to_perturb == "all":
|
476 |
+
if perturb_type in ["overexpress", "activate"]:
|
477 |
+
range_start = 1
|
478 |
+
elif perturb_type in ["delete", "inhibit"]:
|
479 |
+
range_start = 0
|
480 |
+
range_start += 1 # Starting after the CLS token
|
481 |
+
indices_to_perturb = [
|
482 |
+
[i] for i in range(range_start, example_cell["length"][0]-1) # And excluding the EOS token
|
483 |
+
]
|
484 |
+
|
485 |
+
# elif combo_lvl > 0 and anchor_token is None:
|
486 |
+
## to implement
|
487 |
+
elif combo_lvl > 0 and (anchor_token is not None):
|
488 |
+
example_input_ids = example_cell["input_ids"][0]
|
489 |
+
anchor_index = example_input_ids.index(anchor_token[0])
|
490 |
+
indices_to_perturb = [
|
491 |
+
sorted([anchor_index, i]) if i != anchor_index else None
|
492 |
+
for i in range(1, example_cell["length"][0]-1) # Exclude CLS and EOS tokens
|
493 |
+
]
|
494 |
+
indices_to_perturb = [item for item in indices_to_perturb if item is not None]
|
495 |
+
else:
|
496 |
+
example_input_ids = example_cell["input_ids"][0]
|
497 |
+
indices_to_perturb = [
|
498 |
+
[example_input_ids.index(token)] if token in example_input_ids else None
|
499 |
+
for token in tokens_to_perturb
|
500 |
+
]
|
501 |
+
indices_to_perturb = [item for item in indices_to_perturb if item is not None]
|
502 |
+
|
503 |
+
# create all permutations of combo_lvl of modifiers from tokens_to_perturb
|
504 |
+
if combo_lvl > 0 and (anchor_token is None):
|
505 |
+
if tokens_to_perturb != "all":
|
506 |
+
if len(tokens_to_perturb) == combo_lvl + 1:
|
507 |
+
indices_to_perturb = [
|
508 |
+
list(x) for x in it.combinations(indices_to_perturb, combo_lvl + 1)
|
509 |
+
]
|
510 |
+
else:
|
511 |
+
all_indices = [[i] for i in range(1, example_cell["length"][0]-1)] # Exclude CLS and EOS tokens
|
512 |
+
all_indices = [
|
513 |
+
index for index in all_indices if index not in indices_to_perturb
|
514 |
+
]
|
515 |
+
indices_to_perturb = [
|
516 |
+
[[j for i in indices_to_perturb for j in i], x] for x in all_indices
|
517 |
+
]
|
518 |
+
|
519 |
+
length = len(indices_to_perturb)
|
520 |
+
perturbation_dataset = Dataset.from_dict(
|
521 |
+
{
|
522 |
+
"input_ids": example_cell["input_ids"] * length,
|
523 |
+
"perturb_index": indices_to_perturb,
|
524 |
+
}
|
525 |
+
)
|
526 |
+
|
527 |
+
if length < 400:
|
528 |
+
num_proc_i = 1
|
529 |
+
else:
|
530 |
+
num_proc_i = num_proc
|
531 |
+
|
532 |
+
if perturb_type == "delete":
|
533 |
+
perturbation_dataset = perturbation_dataset.map(
|
534 |
+
delete_indices, num_proc=num_proc_i
|
535 |
+
)
|
536 |
+
elif perturb_type == "overexpress":
|
537 |
+
perturbation_dataset = perturbation_dataset.map(
|
538 |
+
overexpress_indices_special, num_proc=num_proc_i
|
539 |
+
)
|
540 |
+
|
541 |
+
perturbation_dataset = perturbation_dataset.map(measure_length, num_proc=num_proc_i)
|
542 |
+
|
543 |
+
return perturbation_dataset, indices_to_perturb
|
544 |
+
|
545 |
+
|
546 |
+
# original cell emb removing the activated/overexpressed/inhibited gene emb
|
547 |
# so that only non-perturbed gene embeddings are compared to each other
|
548 |
# in original or perturbed context
|
549 |
def make_comparison_batch(original_emb_batch, indices_to_perturb, perturb_group):
|
|
|
740 |
cos = torch.nn.CosineSimilarity(dim=1)
|
741 |
|
742 |
# if emb_mode == "gene", can only calculate gene cos sims
|
743 |
+
# against original cell
|
744 |
if cell_states_to_model is None or emb_mode == "gene":
|
745 |
cos_sims = cos(perturbation_emb, original_emb).to("cuda")
|
746 |
+
|
747 |
elif cell_states_to_model is not None and emb_mode == "cell":
|
748 |
possible_states = get_possible_states(cell_states_to_model)
|
749 |
cos_sims = dict(zip(possible_states, [[] for _ in range(len(possible_states))]))
|
|
|
910 |
return self.ens_to_symbol(self.token_to_ens(token))
|
911 |
|
912 |
def symbol_to_token(self, symbol):
|
913 |
+
return self.ens_to_token(self.symbol_to_ens(symbol))
|
geneformer/pretrainer.py
CHANGED
@@ -32,8 +32,6 @@ from transformers.training_args import ParallelMode
|
|
32 |
from transformers.utils import is_tf_available, is_torch_available, logging, to_py_obj
|
33 |
from transformers.utils.generic import _is_tensorflow, _is_torch
|
34 |
|
35 |
-
from . import TOKEN_DICTIONARY_FILE
|
36 |
-
|
37 |
logger = logging.get_logger(__name__)
|
38 |
EncodedInput = List[int]
|
39 |
VERY_LARGE_INTEGER = int(
|
@@ -52,9 +50,6 @@ _is_torch_generator_available = False
|
|
52 |
if version.parse(torch.__version__) >= version.parse("1.6"):
|
53 |
_is_torch_generator_available = True
|
54 |
|
55 |
-
with open(TOKEN_DICTIONARY_FILE, "rb") as f:
|
56 |
-
token_dictionary = pickle.load(f)
|
57 |
-
|
58 |
|
59 |
class ExplicitEnum(Enum):
|
60 |
"""
|
@@ -109,15 +104,7 @@ class GeneformerPreCollator(SpecialTokensMixin):
|
|
109 |
super().__init__(mask_token="<mask>", pad_token="<pad>")
|
110 |
|
111 |
self.token_dictionary = kwargs.get("token_dictionary")
|
112 |
-
# self.mask_token = "<mask>"
|
113 |
-
# self.mask_token_id = self.token_dictionary.get("<mask>")
|
114 |
-
# self.pad_token = "<pad>"
|
115 |
-
# self.pad_token_id = self.token_dictionary.get("<pad>")
|
116 |
self.padding_side = "right"
|
117 |
-
# self.all_special_ids = [
|
118 |
-
# self.token_dictionary.get("<mask>"),
|
119 |
-
# self.token_dictionary.get("<pad>"),
|
120 |
-
# ]
|
121 |
self.model_input_names = ["input_ids"]
|
122 |
|
123 |
def convert_ids_to_tokens(self, value):
|
|
|
32 |
from transformers.utils import is_tf_available, is_torch_available, logging, to_py_obj
|
33 |
from transformers.utils.generic import _is_tensorflow, _is_torch
|
34 |
|
|
|
|
|
35 |
logger = logging.get_logger(__name__)
|
36 |
EncodedInput = List[int]
|
37 |
VERY_LARGE_INTEGER = int(
|
|
|
50 |
if version.parse(torch.__version__) >= version.parse("1.6"):
|
51 |
_is_torch_generator_available = True
|
52 |
|
|
|
|
|
|
|
53 |
|
54 |
class ExplicitEnum(Enum):
|
55 |
"""
|
|
|
104 |
super().__init__(mask_token="<mask>", pad_token="<pad>")
|
105 |
|
106 |
self.token_dictionary = kwargs.get("token_dictionary")
|
|
|
|
|
|
|
|
|
107 |
self.padding_side = "right"
|
|
|
|
|
|
|
|
|
108 |
self.model_input_names = ["input_ids"]
|
109 |
|
110 |
def convert_ids_to_tokens(self, value):
|
geneformer/token_dictionary.pkl
DELETED
Binary file (788 kB)
|
|
geneformer/token_dictionary_gc95M.pkl
CHANGED
Binary files a/geneformer/token_dictionary_gc95M.pkl and b/geneformer/token_dictionary_gc95M.pkl differ
|
|
generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"pad_token_id": 0,
|
4 |
+
"transformers_version": "4.37.1"
|
5 |
+
}
|
{geneformer-12L-30M β gf-12L-30M-i2048}/config.json
RENAMED
File without changes
|
{geneformer-12L-30M β gf-12L-30M-i2048}/pytorch_model.bin
RENAMED
File without changes
|
{geneformer-12L-30M β gf-12L-30M-i2048}/training_args.bin
RENAMED
File without changes
|
gf-12L-95M-i4096/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.02,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"hidden_act": "relu",
|
8 |
+
"hidden_dropout_prob": 0.02,
|
9 |
+
"hidden_size": 512,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 1024,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 4096,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 8,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"torch_dtype": "float32",
|
20 |
+
"transformers_version": "4.37.1",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 20275
|
24 |
+
}
|
gf-12L-95M-i4096/generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"pad_token_id": 0,
|
4 |
+
"transformers_version": "4.37.1"
|
5 |
+
}
|
gf-12L-95M-i4096/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4365ba23e393fcfa0e65a94ac64a0983cd788bd23a8d4914f4ab66f85cfe043c
|
3 |
+
size 152012980
|
gf-12L-95M-i4096/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21a45980734b138029422e95a5601def858821a9ec02cd473938b9f525ac108d
|
3 |
+
size 4920
|
gf-12L-95M-i4096_CLcancer/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/gladstone/theodoris/lab/pretrained_models/encoder/240402_194213_geneformer_94M_L12_emb512_SL4096_E3_B4_LR0.0005_LScosine_WU5000_Oadamw_DS8/models",
|
3 |
+
"architectures": [
|
4 |
+
"BertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.02,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "relu",
|
9 |
+
"hidden_dropout_prob": 0.02,
|
10 |
+
"hidden_size": 512,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1024,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 4096,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 8,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.37.1",
|
22 |
+
"type_vocab_size": 2,
|
23 |
+
"use_cache": true,
|
24 |
+
"vocab_size": 20275
|
25 |
+
}
|
gf-12L-95M-i4096_CLcancer/generation_config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"pad_token_id": 0,
|
4 |
+
"transformers_version": "4.37.1"
|
5 |
+
}
|
gf-12L-95M-i4096_CLcancer/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2451adeed240c165634fea60ccba17063da8a2843ea9fcdcc0ce185720bf0dc2
|
3 |
+
size 152012980
|
gf-12L-95M-i4096_CLcancer/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37074f3ea62a6ba0a312c38526c20c2dccbb068a2c7ee8c7c73b435dd90ab7b1
|
3 |
+
size 5048
|