Christina Theodoris
commited on
Commit
·
bcc03e8
1
Parent(s):
5426788
Add Geneformer trainer and pretraining example
Browse files- examples/pretrain_geneformer_w_deepspeed.py +166 -0
- geneformer/trainer.py +818 -0
examples/pretrain_geneformer_w_deepspeed.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# run with:
|
5 |
+
# deepspeed --num_gpus=12 --num_nodes=3 pretrain_geneformer_w_deepspeed.py --deepspeed ds_config.json
|
6 |
+
|
7 |
+
import datetime
|
8 |
+
|
9 |
+
# imports
|
10 |
+
import os
|
11 |
+
|
12 |
+
os.environ["NCCL_DEBUG"] = "INFO"
|
13 |
+
os.environ["OMPI_MCA_opal_cuda_support"] = "true"
|
14 |
+
os.environ["CONDA_OVERRIDE_GLIBC"] = "2.56"
|
15 |
+
|
16 |
+
import pickle
|
17 |
+
import random
|
18 |
+
import subprocess
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
import pytz
|
22 |
+
import torch
|
23 |
+
from datasets import load_from_disk
|
24 |
+
from transformers import BertConfig, BertForMaskedLM, TrainingArguments
|
25 |
+
|
26 |
+
from .trainer import GeneformerTrainer
|
27 |
+
|
28 |
+
seed_num = 0
|
29 |
+
random.seed(seed_num)
|
30 |
+
np.random.seed(seed_num)
|
31 |
+
seed_val = 42
|
32 |
+
torch.manual_seed(seed_val)
|
33 |
+
torch.cuda.manual_seed_all(seed_val)
|
34 |
+
|
35 |
+
# set local time/directories
|
36 |
+
timezone = pytz.timezone("US/Eastern")
|
37 |
+
rootdir = "/parent_ouput_directory"
|
38 |
+
|
39 |
+
# set model parameters
|
40 |
+
# model type
|
41 |
+
model_type = "bert"
|
42 |
+
# max input size
|
43 |
+
max_input_size = 2**11 # 2048
|
44 |
+
# number of layers
|
45 |
+
num_layers = 6
|
46 |
+
# number of attention heads
|
47 |
+
num_attn_heads = 4
|
48 |
+
# number of embedding dimensions
|
49 |
+
num_embed_dim = 256
|
50 |
+
# intermediate size
|
51 |
+
intermed_size = num_embed_dim * 2
|
52 |
+
# activation function
|
53 |
+
activ_fn = "relu"
|
54 |
+
# initializer range, layer norm, dropout
|
55 |
+
initializer_range = 0.02
|
56 |
+
layer_norm_eps = 1e-12
|
57 |
+
attention_probs_dropout_prob = 0.02
|
58 |
+
hidden_dropout_prob = 0.02
|
59 |
+
|
60 |
+
|
61 |
+
# set training parameters
|
62 |
+
# total number of examples in Genecorpus-30M after QC filtering:
|
63 |
+
num_examples = 27_406_208
|
64 |
+
# number gpus
|
65 |
+
num_gpus = 12
|
66 |
+
# batch size for training and eval
|
67 |
+
geneformer_batch_size = 12
|
68 |
+
# max learning rate
|
69 |
+
max_lr = 1e-3
|
70 |
+
# learning schedule
|
71 |
+
lr_schedule_fn = "linear"
|
72 |
+
# warmup steps
|
73 |
+
warmup_steps = 10_000
|
74 |
+
# number of epochs
|
75 |
+
epochs = 3
|
76 |
+
# optimizer
|
77 |
+
optimizer = "adamw"
|
78 |
+
# weight_decay
|
79 |
+
weight_decay = 0.001
|
80 |
+
|
81 |
+
|
82 |
+
# output directories
|
83 |
+
current_date = datetime.datetime.now(tz=timezone)
|
84 |
+
datestamp = f"{str(current_date.year)[-2:]}{current_date.month:02d}{current_date.day:02d}_{current_date.strftime('%X').replace(':','')}"
|
85 |
+
run_name = f"{datestamp}_geneformer_30M_L{num_layers}_emb{num_embed_dim}_SL{max_input_size}_E{epochs}_B{geneformer_batch_size}_LR{max_lr}_LS{lr_schedule_fn}_WU{warmup_steps}_O{optimizer}_DS{num_gpus}"
|
86 |
+
training_output_dir = f"{rootdir}/models/{run_name}/"
|
87 |
+
logging_dir = f"{rootdir}/runs/{run_name}/"
|
88 |
+
model_output_dir = os.path.join(training_output_dir, "models/")
|
89 |
+
|
90 |
+
|
91 |
+
# ensure not overwriting previously saved model
|
92 |
+
model_output_file = os.path.join(model_output_dir, "pytorch_model.bin")
|
93 |
+
if os.path.isfile(model_output_file) is True:
|
94 |
+
raise Exception("Model already saved to this directory.")
|
95 |
+
|
96 |
+
|
97 |
+
# make training and model output directories
|
98 |
+
subprocess.call(f"mkdir {training_output_dir}", shell=True)
|
99 |
+
subprocess.call(f"mkdir {model_output_dir}", shell=True)
|
100 |
+
|
101 |
+
|
102 |
+
# load gene_ensembl_id:token dictionary (e.g. https://huggingface.co/datasets/ctheodoris/Genecorpus-30M/tree/main/datasets/token_dictionary.pkl)
|
103 |
+
with open("token_dictionary.pkl", "rb") as fp:
|
104 |
+
token_dictionary = pickle.load(fp)
|
105 |
+
|
106 |
+
# model configuration
|
107 |
+
config = {
|
108 |
+
"hidden_size": num_embed_dim,
|
109 |
+
"num_hidden_layers": num_layers,
|
110 |
+
"initializer_range": initializer_range,
|
111 |
+
"layer_norm_eps": layer_norm_eps,
|
112 |
+
"attention_probs_dropout_prob": attention_probs_dropout_prob,
|
113 |
+
"hidden_dropout_prob": hidden_dropout_prob,
|
114 |
+
"intermediate_size": intermed_size,
|
115 |
+
"hidden_act": activ_fn,
|
116 |
+
"max_position_embeddings": max_input_size,
|
117 |
+
"model_type": model_type,
|
118 |
+
"num_attention_heads": num_attn_heads,
|
119 |
+
"pad_token_id": token_dictionary.get("<pad>"),
|
120 |
+
"vocab_size": len(token_dictionary), # genes+2 for <mask> and <pad> tokens
|
121 |
+
}
|
122 |
+
|
123 |
+
config = BertConfig(**config)
|
124 |
+
model = BertForMaskedLM(config)
|
125 |
+
model = model.train()
|
126 |
+
|
127 |
+
# define the training arguments
|
128 |
+
training_args = {
|
129 |
+
"learning_rate": max_lr,
|
130 |
+
"do_train": True,
|
131 |
+
"do_eval": False,
|
132 |
+
"group_by_length": True,
|
133 |
+
"length_column_name": "length",
|
134 |
+
"disable_tqdm": False,
|
135 |
+
"lr_scheduler_type": lr_schedule_fn,
|
136 |
+
"warmup_steps": warmup_steps,
|
137 |
+
"weight_decay": weight_decay,
|
138 |
+
"per_device_train_batch_size": geneformer_batch_size,
|
139 |
+
"num_train_epochs": epochs,
|
140 |
+
"load_best_model_at_end": True,
|
141 |
+
"save_strategy": "steps",
|
142 |
+
"save_steps": num_examples / geneformer_batch_size / 8, # 8 saves per epoch
|
143 |
+
"logging_steps": 1000,
|
144 |
+
"output_dir": training_output_dir,
|
145 |
+
"logging_dir": logging_dir,
|
146 |
+
}
|
147 |
+
training_args = TrainingArguments(**training_args)
|
148 |
+
|
149 |
+
print("Starting training.")
|
150 |
+
|
151 |
+
# define the trainer
|
152 |
+
trainer = GeneformerTrainer(
|
153 |
+
model=model,
|
154 |
+
args=training_args,
|
155 |
+
# pretraining corpus (e.g. https://huggingface.co/datasets/ctheodoris/Genecorpus-30M/tree/main/genecorpus_30M_2048.dataset)
|
156 |
+
train_dataset=load_from_disk("genecorpus_30M_2048.dataset"),
|
157 |
+
# file of lengths of each example cell (e.g. https://huggingface.co/datasets/ctheodoris/Genecorpus-30M/tree/main/genecorpus_30M_2048_sorted_lengths.pkl)
|
158 |
+
example_lengths_file="genecorpus_30M_2048_sorted_lengths.pkl",
|
159 |
+
token_dictionary=token_dictionary,
|
160 |
+
)
|
161 |
+
|
162 |
+
# train
|
163 |
+
trainer.train()
|
164 |
+
|
165 |
+
# save model
|
166 |
+
trainer.save_model(model_output_dir)
|
geneformer/trainer.py
ADDED
@@ -0,0 +1,818 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Geneformer trainer and collator.
|
3 |
+
|
4 |
+
Huggingface trainer and data collator modified to accommodate single-cell transcriptomics data.
|
5 |
+
"""
|
6 |
+
import collections
|
7 |
+
import math
|
8 |
+
import pickle
|
9 |
+
import warnings
|
10 |
+
from enum import Enum
|
11 |
+
from typing import Dict, Iterator, List, Optional, Union
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
import torch
|
15 |
+
from datasets import Dataset
|
16 |
+
from packaging import version
|
17 |
+
from torch.utils.data.distributed import DistributedSampler
|
18 |
+
from torch.utils.data.sampler import RandomSampler
|
19 |
+
from transformers import (
|
20 |
+
BatchEncoding,
|
21 |
+
DataCollatorForLanguageModeling,
|
22 |
+
SpecialTokensMixin,
|
23 |
+
Trainer,
|
24 |
+
)
|
25 |
+
from transformers.file_utils import is_datasets_available, is_sagemaker_dp_enabled
|
26 |
+
from transformers.trainer_pt_utils import (
|
27 |
+
DistributedLengthGroupedSampler,
|
28 |
+
DistributedSamplerWithLoop,
|
29 |
+
LengthGroupedSampler,
|
30 |
+
)
|
31 |
+
from transformers.training_args import ParallelMode
|
32 |
+
from transformers.utils import is_tf_available, is_torch_available, logging, to_py_obj
|
33 |
+
from transformers.utils.generic import _is_tensorflow, _is_torch
|
34 |
+
|
35 |
+
from .tokenizer import TOKEN_DICTIONARY_FILE
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
EncodedInput = List[int]
|
39 |
+
VERY_LARGE_INTEGER = int(
|
40 |
+
1e30
|
41 |
+
) # This is used to set the max input length for a model with infinite size input
|
42 |
+
LARGE_INTEGER = int(
|
43 |
+
1e20
|
44 |
+
) # This is used when we need something big but slightly smaller than VERY_LARGE_INTEGER
|
45 |
+
|
46 |
+
if is_sagemaker_dp_enabled():
|
47 |
+
import smdistributed.dataparallel.torch.distributed as dist
|
48 |
+
else:
|
49 |
+
import torch.distributed as dist
|
50 |
+
|
51 |
+
_is_torch_generator_available = False
|
52 |
+
if version.parse(torch.__version__) >= version.parse("1.6"):
|
53 |
+
_is_torch_generator_available = True
|
54 |
+
|
55 |
+
with open(TOKEN_DICTIONARY_FILE, "rb") as f:
|
56 |
+
token_dictionary = pickle.load(f)
|
57 |
+
|
58 |
+
|
59 |
+
class ExplicitEnum(Enum):
|
60 |
+
"""
|
61 |
+
Enum with more explicit error message for missing values.
|
62 |
+
"""
|
63 |
+
|
64 |
+
@classmethod
|
65 |
+
def _missing_(cls, value):
|
66 |
+
raise ValueError(
|
67 |
+
"%r is not a valid %s, please select one of %s"
|
68 |
+
% (value, cls.__name__, str(list(cls._value2member_map_.keys())))
|
69 |
+
)
|
70 |
+
|
71 |
+
|
72 |
+
class TruncationStrategy(ExplicitEnum):
|
73 |
+
"""
|
74 |
+
Possible values for the ``truncation`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
|
75 |
+
tab-completion in an IDE.
|
76 |
+
"""
|
77 |
+
|
78 |
+
ONLY_FIRST = "only_first"
|
79 |
+
ONLY_SECOND = "only_second"
|
80 |
+
LONGEST_FIRST = "longest_first"
|
81 |
+
DO_NOT_TRUNCATE = "do_not_truncate"
|
82 |
+
|
83 |
+
|
84 |
+
class PaddingStrategy(ExplicitEnum):
|
85 |
+
"""
|
86 |
+
Possible values for the ``padding`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for tab-completion
|
87 |
+
in an IDE.
|
88 |
+
"""
|
89 |
+
|
90 |
+
LONGEST = "longest"
|
91 |
+
MAX_LENGTH = "max_length"
|
92 |
+
DO_NOT_PAD = "do_not_pad"
|
93 |
+
|
94 |
+
|
95 |
+
class TensorType(ExplicitEnum):
|
96 |
+
"""
|
97 |
+
Possible values for the ``return_tensors`` argument in :meth:`PreTrainedTokenizerBase.__call__`. Useful for
|
98 |
+
tab-completion in an IDE.
|
99 |
+
"""
|
100 |
+
|
101 |
+
PYTORCH = "pt"
|
102 |
+
TENSORFLOW = "tf"
|
103 |
+
NUMPY = "np"
|
104 |
+
JAX = "jax"
|
105 |
+
|
106 |
+
|
107 |
+
class GeneformerPreCollator(SpecialTokensMixin):
|
108 |
+
def __init__(self, *args, **kwargs) -> None:
|
109 |
+
self.token_dictionary = kwargs.get("token_dictionary")
|
110 |
+
self.mask_token = "<mask>"
|
111 |
+
self.mask_token_id = self.token_dictionary.get("<mask>")
|
112 |
+
self.pad_token = "<pad>"
|
113 |
+
self.pad_token_id = self.token_dictionary.get("<pad>")
|
114 |
+
self.padding_side = "right"
|
115 |
+
self.all_special_ids = [
|
116 |
+
self.token_dictionary.get("<mask>"),
|
117 |
+
self.token_dictionary.get("<pad>"),
|
118 |
+
]
|
119 |
+
self.model_input_names = ["input_ids"]
|
120 |
+
|
121 |
+
super().__init__(*args, **kwargs)
|
122 |
+
|
123 |
+
def _get_padding_truncation_strategies(
|
124 |
+
self,
|
125 |
+
padding=False,
|
126 |
+
truncation=False,
|
127 |
+
max_length=None,
|
128 |
+
pad_to_multiple_of=None,
|
129 |
+
verbose=True,
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
"""
|
133 |
+
Find the correct padding/truncation strategy with backward compatibility for old arguments (truncation_strategy
|
134 |
+
and pad_to_max_length) and behaviors.
|
135 |
+
"""
|
136 |
+
old_truncation_strategy = kwargs.pop("truncation_strategy", "do_not_truncate")
|
137 |
+
old_pad_to_max_length = kwargs.pop("pad_to_max_length", False)
|
138 |
+
|
139 |
+
# Backward compatibility for previous behavior, maybe we should deprecate it:
|
140 |
+
# If you only set max_length, it activates truncation for max_length
|
141 |
+
if max_length is not None and padding is False and truncation is False:
|
142 |
+
if verbose:
|
143 |
+
if not self.deprecation_warnings.get(
|
144 |
+
"Truncation-not-explicitly-activated", False
|
145 |
+
):
|
146 |
+
logger.warning(
|
147 |
+
"Truncation was not explicitly activated but `max_length` is provided a specific value, "
|
148 |
+
"please use `truncation=True` to explicitly truncate examples to max length. "
|
149 |
+
"Defaulting to 'longest_first' truncation strategy. "
|
150 |
+
"If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy "
|
151 |
+
"more precisely by providing a specific strategy to `truncation`."
|
152 |
+
)
|
153 |
+
self.deprecation_warnings["Truncation-not-explicitly-activated"] = True
|
154 |
+
truncation = "longest_first"
|
155 |
+
|
156 |
+
# Get padding strategy
|
157 |
+
if padding is False and old_pad_to_max_length:
|
158 |
+
if verbose:
|
159 |
+
warnings.warn(
|
160 |
+
"The `pad_to_max_length` argument is deprecated and will be removed in a future version, "
|
161 |
+
"use `padding=True` or `padding='longest'` to pad to the longest sequence in the batch, or "
|
162 |
+
"use `padding='max_length'` to pad to a max length. In this case, you can give a specific "
|
163 |
+
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to pad to the "
|
164 |
+
"maximal input size of the model (e.g. 512 for Bert).",
|
165 |
+
FutureWarning,
|
166 |
+
)
|
167 |
+
if max_length is None:
|
168 |
+
padding_strategy = PaddingStrategy.LONGEST
|
169 |
+
else:
|
170 |
+
padding_strategy = PaddingStrategy.MAX_LENGTH
|
171 |
+
elif padding is not False:
|
172 |
+
if padding is True:
|
173 |
+
padding_strategy = (
|
174 |
+
PaddingStrategy.LONGEST
|
175 |
+
) # Default to pad to the longest sequence in the batch
|
176 |
+
elif not isinstance(padding, PaddingStrategy):
|
177 |
+
padding_strategy = PaddingStrategy(padding)
|
178 |
+
elif isinstance(padding, PaddingStrategy):
|
179 |
+
padding_strategy = padding
|
180 |
+
else:
|
181 |
+
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
182 |
+
|
183 |
+
# Get truncation strategy
|
184 |
+
if truncation is False and old_truncation_strategy != "do_not_truncate":
|
185 |
+
if verbose:
|
186 |
+
warnings.warn(
|
187 |
+
"The `truncation_strategy` argument is deprecated and will be removed in a future version, "
|
188 |
+
"use `truncation=True` to truncate examples to a max length. You can give a specific "
|
189 |
+
"length with `max_length` (e.g. `max_length=45`) or leave max_length to None to truncate to the "
|
190 |
+
"maximal input size of the model (e.g. 512 for Bert). "
|
191 |
+
" If you have pairs of inputs, you can give a specific truncation strategy selected among "
|
192 |
+
"`truncation='only_first'` (will only truncate the first sentence in the pairs) "
|
193 |
+
"`truncation='only_second'` (will only truncate the second sentence in the pairs) "
|
194 |
+
"or `truncation='longest_first'` (will iteratively remove tokens from the longest sentence in the pairs).",
|
195 |
+
FutureWarning,
|
196 |
+
)
|
197 |
+
truncation_strategy = TruncationStrategy(old_truncation_strategy)
|
198 |
+
elif truncation is not False:
|
199 |
+
if truncation is True:
|
200 |
+
truncation_strategy = (
|
201 |
+
TruncationStrategy.LONGEST_FIRST
|
202 |
+
) # Default to truncate the longest sequences in pairs of inputs
|
203 |
+
elif not isinstance(truncation, TruncationStrategy):
|
204 |
+
truncation_strategy = TruncationStrategy(truncation)
|
205 |
+
elif isinstance(truncation, TruncationStrategy):
|
206 |
+
truncation_strategy = truncation
|
207 |
+
else:
|
208 |
+
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
209 |
+
|
210 |
+
# Set max length if needed
|
211 |
+
if max_length is None:
|
212 |
+
if padding_strategy == PaddingStrategy.MAX_LENGTH:
|
213 |
+
if self.model_max_length > LARGE_INTEGER:
|
214 |
+
if verbose:
|
215 |
+
if not self.deprecation_warnings.get(
|
216 |
+
"Asking-to-pad-to-max_length", False
|
217 |
+
):
|
218 |
+
logger.warning(
|
219 |
+
"Asking to pad to max_length but no maximum length is provided and the model has no predefined maximum length. "
|
220 |
+
"Default to no padding."
|
221 |
+
)
|
222 |
+
self.deprecation_warnings["Asking-to-pad-to-max_length"] = True
|
223 |
+
padding_strategy = PaddingStrategy.DO_NOT_PAD
|
224 |
+
else:
|
225 |
+
max_length = self.model_max_length
|
226 |
+
|
227 |
+
if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE:
|
228 |
+
if self.model_max_length > LARGE_INTEGER:
|
229 |
+
if verbose:
|
230 |
+
if not self.deprecation_warnings.get(
|
231 |
+
"Asking-to-truncate-to-max_length", False
|
232 |
+
):
|
233 |
+
logger.warning(
|
234 |
+
"Asking to truncate to max_length but no maximum length is provided and the model has no predefined maximum length. "
|
235 |
+
"Default to no truncation."
|
236 |
+
)
|
237 |
+
self.deprecation_warnings[
|
238 |
+
"Asking-to-truncate-to-max_length"
|
239 |
+
] = True
|
240 |
+
truncation_strategy = TruncationStrategy.DO_NOT_TRUNCATE
|
241 |
+
else:
|
242 |
+
max_length = self.model_max_length
|
243 |
+
|
244 |
+
# Test if we have a padding token
|
245 |
+
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (
|
246 |
+
not self.pad_token or self.pad_token_id < 0
|
247 |
+
):
|
248 |
+
raise ValueError(
|
249 |
+
"Asking to pad but the tokenizer does not have a padding token. "
|
250 |
+
"Please select a token to use as `pad_token` `(tokenizer.pad_token = tokenizer.eos_token e.g.)` "
|
251 |
+
"or add a new pad token via `tokenizer.add_special_tokens({'pad_token': '[PAD]'})`."
|
252 |
+
)
|
253 |
+
|
254 |
+
# Check that we will truncate to a multiple of pad_to_multiple_of if both are provided
|
255 |
+
if (
|
256 |
+
truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE
|
257 |
+
and padding_strategy != PaddingStrategy.DO_NOT_PAD
|
258 |
+
and pad_to_multiple_of is not None
|
259 |
+
and max_length is not None
|
260 |
+
and (max_length % pad_to_multiple_of != 0)
|
261 |
+
):
|
262 |
+
raise ValueError(
|
263 |
+
f"Truncation and padding are both activated but "
|
264 |
+
f"truncation length ({max_length}) is not a multiple of pad_to_multiple_of ({pad_to_multiple_of})."
|
265 |
+
)
|
266 |
+
|
267 |
+
return padding_strategy, truncation_strategy, max_length, kwargs
|
268 |
+
|
269 |
+
def pad(
|
270 |
+
self,
|
271 |
+
encoded_inputs: Union[
|
272 |
+
BatchEncoding,
|
273 |
+
List[BatchEncoding],
|
274 |
+
Dict[str, EncodedInput],
|
275 |
+
Dict[str, List[EncodedInput]],
|
276 |
+
List[Dict[str, EncodedInput]],
|
277 |
+
],
|
278 |
+
padding: Union[bool, str, PaddingStrategy] = True,
|
279 |
+
max_length: Optional[int] = None,
|
280 |
+
pad_to_multiple_of: Optional[int] = None,
|
281 |
+
return_attention_mask: Optional[bool] = True,
|
282 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
283 |
+
verbose: bool = True,
|
284 |
+
) -> BatchEncoding:
|
285 |
+
"""
|
286 |
+
Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
287 |
+
in the batch.
|
288 |
+
|
289 |
+
Padding side (left/right) padding token ids are defined at the tokenizer level (with ``self.padding_side``,
|
290 |
+
``self.pad_token_id`` and ``self.pad_token_type_id``)
|
291 |
+
|
292 |
+
.. note::
|
293 |
+
|
294 |
+
If the ``encoded_inputs`` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
295 |
+
result will use the same type unless you provide a different tensor type with ``return_tensors``. In the
|
296 |
+
case of PyTorch tensors, you will lose the specific device of your tensors however.
|
297 |
+
|
298 |
+
Args:
|
299 |
+
encoded_inputs (:class:`~transformers.BatchEncoding`, list of :class:`~transformers.BatchEncoding`, :obj:`Dict[str, List[int]]`, :obj:`Dict[str, List[List[int]]` or :obj:`List[Dict[str, List[int]]]`):
|
300 |
+
Tokenized inputs. Can represent one input (:class:`~transformers.BatchEncoding` or :obj:`Dict[str,
|
301 |
+
List[int]]`) or a batch of tokenized inputs (list of :class:`~transformers.BatchEncoding`, `Dict[str,
|
302 |
+
List[List[int]]]` or `List[Dict[str, List[int]]]`) so you can use this method during preprocessing as
|
303 |
+
well as in a PyTorch Dataloader collate function.
|
304 |
+
|
305 |
+
Instead of :obj:`List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
306 |
+
see the note above for the return type.
|
307 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
308 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
309 |
+
index) among:
|
310 |
+
|
311 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a
|
312 |
+
single sequence if provided).
|
313 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
314 |
+
maximum acceptable input length for the model if that argument is not provided.
|
315 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
316 |
+
different lengths).
|
317 |
+
max_length (:obj:`int`, `optional`):
|
318 |
+
Maximum length of the returned list and optionally padding length (see above).
|
319 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
320 |
+
If set will pad the sequence to a multiple of the provided value.
|
321 |
+
|
322 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
323 |
+
>= 7.5 (Volta).
|
324 |
+
return_attention_mask (:obj:`bool`, `optional`):
|
325 |
+
Whether to return the attention mask. If left to the default, will return the attention mask according
|
326 |
+
to the specific tokenizer's default, defined by the :obj:`return_outputs` attribute.
|
327 |
+
|
328 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
329 |
+
return_tensors (:obj:`str` or :class:`~transformers.tokenization_utils_base.TensorType`, `optional`):
|
330 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
331 |
+
|
332 |
+
* :obj:`'tf'`: Return TensorFlow :obj:`tf.constant` objects.
|
333 |
+
* :obj:`'pt'`: Return PyTorch :obj:`torch.Tensor` objects.
|
334 |
+
* :obj:`'np'`: Return Numpy :obj:`np.ndarray` objects.
|
335 |
+
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`):
|
336 |
+
Whether or not to print more information and warnings.
|
337 |
+
"""
|
338 |
+
# If we have a list of dicts, let's convert it in a dict of lists
|
339 |
+
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
340 |
+
if isinstance(encoded_inputs, (list, tuple)) and isinstance(
|
341 |
+
encoded_inputs[0], (dict, BatchEncoding)
|
342 |
+
):
|
343 |
+
encoded_inputs = {
|
344 |
+
key: [example[key] for example in encoded_inputs]
|
345 |
+
for key in encoded_inputs[0].keys()
|
346 |
+
}
|
347 |
+
|
348 |
+
# The model's main input name, usually `input_ids`, has be passed for padding
|
349 |
+
if self.model_input_names[0] not in encoded_inputs:
|
350 |
+
raise ValueError(
|
351 |
+
"You should supply an encoding or a list of encodings to this method"
|
352 |
+
f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
353 |
+
)
|
354 |
+
|
355 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
356 |
+
|
357 |
+
if not required_input:
|
358 |
+
if return_attention_mask:
|
359 |
+
encoded_inputs["attention_mask"] = []
|
360 |
+
return encoded_inputs
|
361 |
+
|
362 |
+
# If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
363 |
+
# and rebuild them afterwards if no return_tensors is specified
|
364 |
+
# Note that we lose the specific device the tensor may be on for PyTorch
|
365 |
+
|
366 |
+
first_element = required_input[0]
|
367 |
+
if isinstance(first_element, (list, tuple)):
|
368 |
+
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
369 |
+
index = 0
|
370 |
+
while len(required_input[index]) == 0:
|
371 |
+
index += 1
|
372 |
+
if index < len(required_input):
|
373 |
+
first_element = required_input[index][0]
|
374 |
+
# At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
375 |
+
if not isinstance(first_element, (int, list, tuple)):
|
376 |
+
if is_tf_available() and _is_tensorflow(first_element):
|
377 |
+
return_tensors = "tf" if return_tensors is None else return_tensors
|
378 |
+
elif is_torch_available() and _is_torch(first_element):
|
379 |
+
return_tensors = "pt" if return_tensors is None else return_tensors
|
380 |
+
elif isinstance(first_element, np.ndarray):
|
381 |
+
return_tensors = "np" if return_tensors is None else return_tensors
|
382 |
+
else:
|
383 |
+
raise ValueError(
|
384 |
+
f"type of {first_element} unknown: {type(first_element)}. "
|
385 |
+
f"Should be one of a python, numpy, pytorch or tensorflow object."
|
386 |
+
)
|
387 |
+
|
388 |
+
for key, value in encoded_inputs.items():
|
389 |
+
encoded_inputs[key] = to_py_obj(value)
|
390 |
+
|
391 |
+
# Convert padding_strategy in PaddingStrategy
|
392 |
+
padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
393 |
+
padding=padding, max_length=max_length, verbose=verbose
|
394 |
+
)
|
395 |
+
|
396 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
397 |
+
if required_input and not isinstance(required_input[0], (list, tuple)):
|
398 |
+
encoded_inputs = self._pad(
|
399 |
+
encoded_inputs,
|
400 |
+
max_length=max_length,
|
401 |
+
padding_strategy=padding_strategy,
|
402 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
403 |
+
return_attention_mask=return_attention_mask,
|
404 |
+
)
|
405 |
+
return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
406 |
+
|
407 |
+
batch_size = len(required_input)
|
408 |
+
assert all(
|
409 |
+
len(v) == batch_size for v in encoded_inputs.values()
|
410 |
+
), "Some items in the output dictionary have a different batch size than others."
|
411 |
+
|
412 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
413 |
+
max_length = max(len(inputs) for inputs in required_input)
|
414 |
+
padding_strategy = PaddingStrategy.MAX_LENGTH
|
415 |
+
|
416 |
+
batch_outputs = {}
|
417 |
+
for i in range(batch_size):
|
418 |
+
inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
419 |
+
outputs = self._pad(
|
420 |
+
inputs,
|
421 |
+
max_length=max_length,
|
422 |
+
padding_strategy=padding_strategy,
|
423 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
424 |
+
return_attention_mask=return_attention_mask,
|
425 |
+
)
|
426 |
+
|
427 |
+
for key, value in outputs.items():
|
428 |
+
if key not in batch_outputs:
|
429 |
+
batch_outputs[key] = []
|
430 |
+
batch_outputs[key].append(value)
|
431 |
+
|
432 |
+
return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
433 |
+
|
434 |
+
def _pad(
|
435 |
+
self,
|
436 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
437 |
+
max_length: Optional[int] = None,
|
438 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
439 |
+
pad_to_multiple_of: Optional[int] = None,
|
440 |
+
return_attention_mask: Optional[bool] = None,
|
441 |
+
) -> dict:
|
442 |
+
"""
|
443 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
444 |
+
|
445 |
+
Args:
|
446 |
+
encoded_inputs: Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
447 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
448 |
+
Will truncate by taking into account the special tokens.
|
449 |
+
padding_strategy: PaddingStrategy to use for padding.
|
450 |
+
|
451 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
452 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
453 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
454 |
+
The tokenizer padding sides are defined in self.padding_side:
|
455 |
+
|
456 |
+
- 'left': pads on the left of the sequences
|
457 |
+
- 'right': pads on the right of the sequences
|
458 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
459 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
460 |
+
>= 7.5 (Volta).
|
461 |
+
return_attention_mask: (optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
462 |
+
"""
|
463 |
+
# Load from model defaults
|
464 |
+
if return_attention_mask is None:
|
465 |
+
return_attention_mask = "attention_mask" in self.model_input_names
|
466 |
+
|
467 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
468 |
+
|
469 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
470 |
+
max_length = len(required_input)
|
471 |
+
|
472 |
+
if (
|
473 |
+
max_length is not None
|
474 |
+
and pad_to_multiple_of is not None
|
475 |
+
and (max_length % pad_to_multiple_of != 0)
|
476 |
+
):
|
477 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
478 |
+
|
479 |
+
needs_to_be_padded = (
|
480 |
+
padding_strategy != PaddingStrategy.DO_NOT_PAD
|
481 |
+
and len(required_input) != max_length
|
482 |
+
)
|
483 |
+
|
484 |
+
if needs_to_be_padded:
|
485 |
+
difference = max_length - len(required_input)
|
486 |
+
if self.padding_side == "right":
|
487 |
+
if return_attention_mask:
|
488 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input) + [
|
489 |
+
0
|
490 |
+
] * difference
|
491 |
+
if "token_type_ids" in encoded_inputs:
|
492 |
+
encoded_inputs["token_type_ids"] = (
|
493 |
+
encoded_inputs["token_type_ids"]
|
494 |
+
+ [self.pad_token_type_id] * difference
|
495 |
+
)
|
496 |
+
if "special_tokens_mask" in encoded_inputs:
|
497 |
+
encoded_inputs["special_tokens_mask"] = (
|
498 |
+
encoded_inputs["special_tokens_mask"] + [1] * difference
|
499 |
+
)
|
500 |
+
encoded_inputs[self.model_input_names[0]] = (
|
501 |
+
required_input + [self.pad_token_id] * difference
|
502 |
+
)
|
503 |
+
elif self.padding_side == "left":
|
504 |
+
if return_attention_mask:
|
505 |
+
encoded_inputs["attention_mask"] = [0] * difference + [1] * len(
|
506 |
+
required_input
|
507 |
+
)
|
508 |
+
if "token_type_ids" in encoded_inputs:
|
509 |
+
encoded_inputs["token_type_ids"] = [
|
510 |
+
self.pad_token_type_id
|
511 |
+
] * difference + encoded_inputs["token_type_ids"]
|
512 |
+
if "special_tokens_mask" in encoded_inputs:
|
513 |
+
encoded_inputs["special_tokens_mask"] = [
|
514 |
+
1
|
515 |
+
] * difference + encoded_inputs["special_tokens_mask"]
|
516 |
+
encoded_inputs[self.model_input_names[0]] = [
|
517 |
+
self.pad_token_id
|
518 |
+
] * difference + required_input
|
519 |
+
else:
|
520 |
+
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
521 |
+
elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
522 |
+
encoded_inputs["attention_mask"] = [1] * len(required_input)
|
523 |
+
|
524 |
+
return encoded_inputs
|
525 |
+
|
526 |
+
def get_special_tokens_mask(
|
527 |
+
self,
|
528 |
+
token_ids_0: List[int],
|
529 |
+
token_ids_1: Optional[List[int]] = None,
|
530 |
+
already_has_special_tokens: bool = False,
|
531 |
+
) -> List[int]:
|
532 |
+
"""
|
533 |
+
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
|
534 |
+
special tokens using the tokenizer ``prepare_for_model`` or ``encode_plus`` methods.
|
535 |
+
Args:
|
536 |
+
token_ids_0 (:obj:`List[int]`):
|
537 |
+
List of ids of the first sequence.
|
538 |
+
token_ids_1 (:obj:`List[int]`, `optional`):
|
539 |
+
List of ids of the second sequence.
|
540 |
+
already_has_special_tokens (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
541 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
542 |
+
Returns:
|
543 |
+
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
544 |
+
"""
|
545 |
+
assert already_has_special_tokens and token_ids_1 is None, (
|
546 |
+
"You cannot use ``already_has_special_tokens=False`` with this tokenizer. "
|
547 |
+
"Please use a slow (full python) tokenizer to activate this argument."
|
548 |
+
"Or set `return_special_tokens_mask=True` when calling the encoding method "
|
549 |
+
"to get the special tokens mask in any tokenizer. "
|
550 |
+
)
|
551 |
+
|
552 |
+
all_special_ids = self.all_special_ids # cache the property
|
553 |
+
|
554 |
+
special_tokens_mask = [
|
555 |
+
1 if token in all_special_ids else 0 for token in token_ids_0
|
556 |
+
]
|
557 |
+
|
558 |
+
return special_tokens_mask
|
559 |
+
|
560 |
+
def convert_tokens_to_ids(
|
561 |
+
self, tokens: Union[str, List[str]]
|
562 |
+
) -> Union[int, List[int]]:
|
563 |
+
"""
|
564 |
+
Converts a token string (or a sequence of tokens) in a single integer id (or a sequence of ids), using the
|
565 |
+
vocabulary.
|
566 |
+
Args:
|
567 |
+
tokens (:obj:`str` or :obj:`List[str]`): One or several token(s) to convert to token id(s).
|
568 |
+
Returns:
|
569 |
+
:obj:`int` or :obj:`List[int]`: The token id or list of token ids.
|
570 |
+
"""
|
571 |
+
if tokens is None:
|
572 |
+
return None
|
573 |
+
|
574 |
+
if isinstance(tokens, str):
|
575 |
+
return self._convert_token_to_id_with_added_voc(tokens)
|
576 |
+
|
577 |
+
ids = []
|
578 |
+
for token in tokens:
|
579 |
+
ids.append(self._convert_token_to_id_with_added_voc(token))
|
580 |
+
return ids
|
581 |
+
|
582 |
+
def _convert_token_to_id_with_added_voc(self, token):
|
583 |
+
if token is None:
|
584 |
+
return None
|
585 |
+
|
586 |
+
return self.token_dictionary.get(token)
|
587 |
+
|
588 |
+
def __len__(self):
|
589 |
+
return len(self.token_dictionary)
|
590 |
+
|
591 |
+
|
592 |
+
class GeneformerTrainer(Trainer):
|
593 |
+
def __init__(self, *args, **kwargs):
|
594 |
+
data_collator = kwargs.get("data_collator")
|
595 |
+
token_dictionary = kwargs.get("token_dictionary")
|
596 |
+
|
597 |
+
if data_collator is None:
|
598 |
+
precollator = GeneformerPreCollator(token_dictionary=token_dictionary)
|
599 |
+
|
600 |
+
# # Data Collator Functions
|
601 |
+
data_collator = DataCollatorForLanguageModeling(
|
602 |
+
tokenizer=precollator, mlm=True, mlm_probability=0.15
|
603 |
+
)
|
604 |
+
kwargs["data_collator"] = data_collator
|
605 |
+
|
606 |
+
super().__init__(*args, **kwargs)
|
607 |
+
|
608 |
+
# load previously saved length vector for dataset to speed up LengthGroupedSampler
|
609 |
+
# pre-obtained with [dataset[i]["length"] for i in range(len(dataset))]
|
610 |
+
if kwargs.get("example_lengths_file"):
|
611 |
+
with open(kwargs.get("example_lengths_file"), "rb") as f:
|
612 |
+
self.example_lengths = pickle.load(f)
|
613 |
+
else:
|
614 |
+
raise Exception(
|
615 |
+
"example_lengths_file is required; e.g. https://huggingface.co/datasets/ctheodoris/Genecorpus-30M/tree/main/genecorpus_30M_2048_sorted_lengths.pkl"
|
616 |
+
)
|
617 |
+
|
618 |
+
# modify LengthGroupedSampler to avoid dataset[length_column_name] hanging
|
619 |
+
def _get_train_sampler(self) -> Optional[torch.utils.data.sampler.Sampler]:
|
620 |
+
if not isinstance(self.train_dataset, collections.abc.Sized):
|
621 |
+
return None
|
622 |
+
|
623 |
+
generator = None
|
624 |
+
if self.args.world_size <= 1 and _is_torch_generator_available:
|
625 |
+
generator = torch.Generator()
|
626 |
+
generator.manual_seed(
|
627 |
+
int(torch.empty((), dtype=torch.int64).random_().item())
|
628 |
+
)
|
629 |
+
|
630 |
+
# Build the sampler.
|
631 |
+
if self.args.group_by_length:
|
632 |
+
if is_datasets_available() and isinstance(self.train_dataset, Dataset):
|
633 |
+
lengths = self.example_lengths
|
634 |
+
else:
|
635 |
+
lengths = None
|
636 |
+
print(f"Lengths: {len(lengths)}")
|
637 |
+
model_input_name = (
|
638 |
+
self.tokenizer.model_input_names[0]
|
639 |
+
if self.tokenizer is not None
|
640 |
+
else None
|
641 |
+
)
|
642 |
+
if self.args.world_size <= 1:
|
643 |
+
return LengthGroupedSampler(
|
644 |
+
self.train_dataset,
|
645 |
+
self.args.train_batch_size,
|
646 |
+
lengths=lengths,
|
647 |
+
model_input_name=model_input_name,
|
648 |
+
generator=generator,
|
649 |
+
)
|
650 |
+
else:
|
651 |
+
return CustomDistributedLengthGroupedSampler(
|
652 |
+
self.train_dataset,
|
653 |
+
self.args.train_batch_size,
|
654 |
+
num_replicas=self.args.world_size,
|
655 |
+
rank=self.args.process_index,
|
656 |
+
lengths=lengths,
|
657 |
+
model_input_name=model_input_name,
|
658 |
+
seed=self.args.seed,
|
659 |
+
)
|
660 |
+
|
661 |
+
else:
|
662 |
+
if self.args.world_size <= 1:
|
663 |
+
if _is_torch_generator_available:
|
664 |
+
return RandomSampler(self.train_dataset, generator=generator)
|
665 |
+
return RandomSampler(self.train_dataset)
|
666 |
+
elif (
|
667 |
+
self.args.parallel_mode
|
668 |
+
in [ParallelMode.TPU, ParallelMode.SAGEMAKER_MODEL_PARALLEL]
|
669 |
+
and not self.args.dataloader_drop_last
|
670 |
+
):
|
671 |
+
# Use a loop for TPUs when drop_last is False to have all batches have the same size.
|
672 |
+
return DistributedSamplerWithLoop(
|
673 |
+
self.train_dataset,
|
674 |
+
batch_size=self.args.per_device_train_batch_size,
|
675 |
+
num_replicas=self.args.world_size,
|
676 |
+
rank=self.args.process_index,
|
677 |
+
seed=self.args.seed,
|
678 |
+
)
|
679 |
+
else:
|
680 |
+
return DistributedSampler(
|
681 |
+
self.train_dataset,
|
682 |
+
num_replicas=self.args.world_size,
|
683 |
+
rank=self.args.process_index,
|
684 |
+
seed=self.args.seed,
|
685 |
+
)
|
686 |
+
|
687 |
+
|
688 |
+
class CustomDistributedLengthGroupedSampler(DistributedLengthGroupedSampler):
|
689 |
+
r"""
|
690 |
+
Distributed Sampler that samples indices in a way that groups together features of the dataset of roughly the same
|
691 |
+
length while keeping a bit of randomness.
|
692 |
+
"""
|
693 |
+
# Copied and adapted from PyTorch DistributedSampler.
|
694 |
+
def __init__(
|
695 |
+
self,
|
696 |
+
dataset: Dataset,
|
697 |
+
batch_size: int,
|
698 |
+
num_replicas: Optional[int] = None,
|
699 |
+
rank: Optional[int] = None,
|
700 |
+
seed: int = 0,
|
701 |
+
drop_last: bool = False,
|
702 |
+
lengths: Optional[List[int]] = None,
|
703 |
+
model_input_name: Optional[str] = None,
|
704 |
+
):
|
705 |
+
if num_replicas is None:
|
706 |
+
if not dist.is_available():
|
707 |
+
raise RuntimeError("Requires distributed package to be available")
|
708 |
+
num_replicas = dist.get_world_size()
|
709 |
+
if rank is None:
|
710 |
+
if not dist.is_available():
|
711 |
+
raise RuntimeError("Requires distributed package to be available")
|
712 |
+
rank = dist.get_rank()
|
713 |
+
self.dataset = dataset
|
714 |
+
self.batch_size = batch_size
|
715 |
+
self.num_replicas = num_replicas
|
716 |
+
self.rank = rank
|
717 |
+
self.epoch = 0
|
718 |
+
self.drop_last = drop_last
|
719 |
+
# If the dataset length is evenly divisible by # of replicas, then there
|
720 |
+
# is no need to drop any data, since the dataset will be split equally.
|
721 |
+
if self.drop_last and len(self.dataset) % self.num_replicas != 0:
|
722 |
+
# Split to nearest available length that is evenly divisible.
|
723 |
+
# This is to ensure each rank receives the same amount of data when
|
724 |
+
# using this Sampler.
|
725 |
+
self.num_samples = math.ceil(
|
726 |
+
(len(self.dataset) - self.num_replicas) / self.num_replicas
|
727 |
+
)
|
728 |
+
else:
|
729 |
+
self.num_samples = math.ceil(len(self.dataset) / self.num_replicas)
|
730 |
+
self.total_size = self.num_samples * self.num_replicas
|
731 |
+
self.seed = seed
|
732 |
+
self.model_input_name = (
|
733 |
+
model_input_name if model_input_name is not None else "input_ids"
|
734 |
+
)
|
735 |
+
|
736 |
+
if lengths is None:
|
737 |
+
print("Lengths is none - calculating lengths.")
|
738 |
+
if (
|
739 |
+
not (
|
740 |
+
isinstance(dataset[0], dict)
|
741 |
+
or isinstance(dataset[0], BatchEncoding)
|
742 |
+
)
|
743 |
+
or self.model_input_name not in dataset[0]
|
744 |
+
):
|
745 |
+
raise ValueError(
|
746 |
+
"Can only automatically infer lengths for datasets whose items are dictionaries with an "
|
747 |
+
f"'{self.model_input_name}' key."
|
748 |
+
)
|
749 |
+
lengths = [len(feature[self.model_input_name]) for feature in dataset]
|
750 |
+
self.lengths = lengths
|
751 |
+
|
752 |
+
def __iter__(self) -> Iterator:
|
753 |
+
# Deterministically shuffle based on epoch and seed
|
754 |
+
g = torch.Generator()
|
755 |
+
g.manual_seed(self.seed + self.epoch)
|
756 |
+
|
757 |
+
indices = get_length_grouped_indices(self.lengths, self.batch_size, generator=g)
|
758 |
+
|
759 |
+
if not self.drop_last:
|
760 |
+
# add extra samples to make it evenly divisible
|
761 |
+
indices += indices[: (self.total_size - len(indices))]
|
762 |
+
else:
|
763 |
+
# remove tail of data to make it evenly divisible.
|
764 |
+
indices = indices[: self.total_size]
|
765 |
+
assert len(indices) == self.total_size
|
766 |
+
|
767 |
+
# subsample
|
768 |
+
indices = indices[self.rank : self.total_size : self.num_replicas]
|
769 |
+
assert len(indices) == self.num_samples
|
770 |
+
|
771 |
+
return iter(indices)
|
772 |
+
|
773 |
+
|
774 |
+
def get_length_grouped_indices(
|
775 |
+
lengths, batch_size, mega_batch_mult=None, generator=None
|
776 |
+
):
|
777 |
+
"""
|
778 |
+
Return a list of indices so that each slice of :obj:`batch_size` consecutive indices correspond to elements of
|
779 |
+
similar lengths. To do this, the indices are:
|
780 |
+
|
781 |
+
- randomly permuted
|
782 |
+
- grouped in mega-batches of size :obj:`mega_batch_mult * batch_size`
|
783 |
+
- sorted by length in each mega-batch
|
784 |
+
|
785 |
+
The result is the concatenation of all mega-batches, with the batch of :obj:`batch_size` containing the element of
|
786 |
+
maximum length placed first, so that an OOM happens sooner rather than later.
|
787 |
+
"""
|
788 |
+
# Default for mega_batch_mult: 50 or the number to get 4 megabatches, whichever is smaller.
|
789 |
+
if mega_batch_mult is None:
|
790 |
+
# mega_batch_mult = min(len(lengths) // (batch_size * 4), 50)
|
791 |
+
mega_batch_mult = min(len(lengths) // (batch_size * 4), 1000)
|
792 |
+
# Just in case, for tiny datasets
|
793 |
+
if mega_batch_mult == 0:
|
794 |
+
mega_batch_mult = 1
|
795 |
+
|
796 |
+
# We need to use torch for the random part as a distributed sampler will set the random seed for torch.
|
797 |
+
indices = torch.randperm(len(lengths), generator=generator)
|
798 |
+
megabatch_size = mega_batch_mult * batch_size
|
799 |
+
megabatches = [
|
800 |
+
indices[i : i + megabatch_size].tolist()
|
801 |
+
for i in range(0, len(lengths), megabatch_size)
|
802 |
+
]
|
803 |
+
megabatches = [
|
804 |
+
list(sorted(megabatch, key=lambda i: lengths[i], reverse=True))
|
805 |
+
for megabatch in megabatches
|
806 |
+
]
|
807 |
+
|
808 |
+
# The rest is to get the biggest batch first.
|
809 |
+
# Since each megabatch is sorted by descending length, the longest element is the first
|
810 |
+
megabatch_maximums = [lengths[megabatch[0]] for megabatch in megabatches]
|
811 |
+
max_idx = torch.argmax(torch.tensor(megabatch_maximums)).item()
|
812 |
+
# Switch to put the longest element in first position
|
813 |
+
megabatches[0][0], megabatches[max_idx][0] = (
|
814 |
+
megabatches[max_idx][0],
|
815 |
+
megabatches[0][0],
|
816 |
+
)
|
817 |
+
|
818 |
+
return [item for sublist in megabatches for item in sublist]
|