Christina Theodoris
commited on
Commit
·
fd93ebf
1
Parent(s):
5d0082c
Add option for modifying chunk size for anndata tokenizer
Browse files- geneformer/tokenizer.py +47 -35
geneformer/tokenizer.py
CHANGED
@@ -11,18 +11,16 @@ Optional col (cell) attributes: any other cell metadata can be passed on to the
|
|
11 |
Usage:
|
12 |
from geneformer import TranscriptomeTokenizer
|
13 |
tk = TranscriptomeTokenizer({"cell_type": "cell_type", "organ_major": "organ_major"}, nproc=4)
|
14 |
-
tk.tokenize_data("
|
15 |
"""
|
16 |
|
17 |
from __future__ import annotations
|
18 |
-
from typing import Literal
|
19 |
-
import pickle
|
20 |
-
from pathlib import Path
|
21 |
|
22 |
import logging
|
23 |
-
|
24 |
import warnings
|
25 |
-
|
|
|
26 |
|
27 |
import anndata as ad
|
28 |
import loompy as lp
|
@@ -30,6 +28,7 @@ import numpy as np
|
|
30 |
import scipy.sparse as sp
|
31 |
from datasets import Dataset
|
32 |
|
|
|
33 |
logger = logging.getLogger(__name__)
|
34 |
|
35 |
GENE_MEDIAN_FILE = Path(__file__).parent / "gene_median_dictionary.pkl"
|
@@ -61,6 +60,7 @@ class TranscriptomeTokenizer:
|
|
61 |
self,
|
62 |
custom_attr_name_dict=None,
|
63 |
nproc=1,
|
|
|
64 |
gene_median_file=GENE_MEDIAN_FILE,
|
65 |
token_dictionary_file=TOKEN_DICTIONARY_FILE,
|
66 |
):
|
@@ -75,6 +75,8 @@ class TranscriptomeTokenizer:
|
|
75 |
Values are the names of the attributes in the dataset.
|
76 |
nproc : int
|
77 |
Number of processes to use for dataset mapping.
|
|
|
|
|
78 |
gene_median_file : Path
|
79 |
Path to pickle file containing dictionary of non-zero median
|
80 |
gene expression values across Genecorpus-30M.
|
@@ -87,6 +89,9 @@ class TranscriptomeTokenizer:
|
|
87 |
# number of processes for dataset mapping
|
88 |
self.nproc = nproc
|
89 |
|
|
|
|
|
|
|
90 |
# load dictionary of gene normalization factors
|
91 |
# (non-zero median value of expression across Genecorpus-30M)
|
92 |
with open(gene_median_file, "rb") as f:
|
@@ -111,11 +116,11 @@ class TranscriptomeTokenizer:
|
|
111 |
use_generator: bool = False,
|
112 |
):
|
113 |
"""
|
114 |
-
Tokenize .loom files in
|
115 |
|
116 |
Parameters
|
117 |
----------
|
118 |
-
|
119 |
Path to directory containing loom files or anndata files
|
120 |
output_directory : Path
|
121 |
Path to directory where tokenized data will be saved as .dataset
|
@@ -129,7 +134,9 @@ class TranscriptomeTokenizer:
|
|
129 |
tokenized_cells, cell_metadata = self.tokenize_files(
|
130 |
Path(data_directory), file_format
|
131 |
)
|
132 |
-
tokenized_dataset = self.create_dataset(
|
|
|
|
|
133 |
|
134 |
output_path = (Path(output_directory) / output_prefix).with_suffix(".dataset")
|
135 |
tokenized_dataset.save_to_disk(output_path)
|
@@ -140,7 +147,9 @@ class TranscriptomeTokenizer:
|
|
140 |
tokenized_cells = []
|
141 |
if self.custom_attr_name_dict is not None:
|
142 |
cell_attr = [attr_key for attr_key in self.custom_attr_name_dict.keys()]
|
143 |
-
cell_metadata = {
|
|
|
|
|
144 |
|
145 |
# loops through directories to tokenize .loom files
|
146 |
file_found = 0
|
@@ -155,17 +164,20 @@ class TranscriptomeTokenizer:
|
|
155 |
tokenized_cells += file_tokenized_cells
|
156 |
if self.custom_attr_name_dict is not None:
|
157 |
for k in cell_attr:
|
158 |
-
cell_metadata[self.custom_attr_name_dict[k]] += file_cell_metadata[
|
|
|
|
|
159 |
else:
|
160 |
cell_metadata = None
|
161 |
|
162 |
if file_found == 0:
|
163 |
logger.error(
|
164 |
-
f"No .{file_format} files found in directory {data_directory}."
|
|
|
165 |
raise
|
166 |
return tokenized_cells, cell_metadata
|
167 |
|
168 |
-
def tokenize_anndata(self, adata_file_path, target_sum=10_000
|
169 |
adata = ad.read(adata_file_path, backed="r")
|
170 |
|
171 |
if self.custom_attr_name_dict is not None:
|
@@ -195,9 +207,7 @@ class TranscriptomeTokenizer:
|
|
195 |
var_exists = True
|
196 |
|
197 |
if var_exists:
|
198 |
-
filter_pass_loc = np.where(
|
199 |
-
[i == 1 for i in adata.obs["filter_pass"]]
|
200 |
-
)[0]
|
201 |
elif not var_exists:
|
202 |
print(
|
203 |
f"{adata_file_path} has no column attribute 'filter_pass'; tokenizing all cells."
|
@@ -206,12 +216,12 @@ class TranscriptomeTokenizer:
|
|
206 |
|
207 |
tokenized_cells = []
|
208 |
|
209 |
-
for i in range(0, len(filter_pass_loc), chunk_size):
|
210 |
-
idx = filter_pass_loc[i:i+chunk_size]
|
211 |
|
212 |
-
n_counts = adata[idx].obs[
|
213 |
X_view = adata[idx, coding_miRNA_loc].X
|
214 |
-
X_norm =
|
215 |
X_norm = sp.csr_matrix(X_norm)
|
216 |
|
217 |
tokenized_cells += [
|
@@ -259,9 +269,7 @@ class TranscriptomeTokenizer:
|
|
259 |
var_exists = True
|
260 |
|
261 |
if var_exists:
|
262 |
-
filter_pass_loc = np.where(
|
263 |
-
[i == 1 for i in data.ca["filter_pass"]]
|
264 |
-
)[0]
|
265 |
elif not var_exists:
|
266 |
print(
|
267 |
f"{loom_file_path} has no column attribute 'filter_pass'; tokenizing all cells."
|
@@ -270,7 +278,7 @@ class TranscriptomeTokenizer:
|
|
270 |
|
271 |
# scan through .loom files and tokenize cells
|
272 |
tokenized_cells = []
|
273 |
-
for
|
274 |
# select subview with protein-coding and miRNA genes
|
275 |
subview = view.view[coding_miRNA_loc, :]
|
276 |
|
@@ -297,7 +305,13 @@ class TranscriptomeTokenizer:
|
|
297 |
|
298 |
return tokenized_cells, file_cell_metadata
|
299 |
|
300 |
-
def create_dataset(
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
print("Creating dataset.")
|
302 |
# create dict for dataset creation
|
303 |
dataset_dict = {"input_ids": tokenized_cells}
|
@@ -306,30 +320,28 @@ class TranscriptomeTokenizer:
|
|
306 |
|
307 |
# create dataset
|
308 |
if use_generator:
|
|
|
309 |
def dict_generator():
|
310 |
for i in range(len(tokenized_cells)):
|
311 |
yield {k: dataset_dict[k][i] for k in dataset_dict.keys()}
|
|
|
312 |
output_dataset = Dataset.from_generator(dict_generator, num_proc=self.nproc)
|
313 |
else:
|
314 |
output_dataset = Dataset.from_dict(dataset_dict)
|
315 |
-
|
316 |
def format_cell_features(example):
|
317 |
# Store original uncropped input_ids in separate feature
|
318 |
if keep_uncropped_input_ids:
|
319 |
-
example[
|
320 |
-
example[
|
321 |
|
322 |
# Truncate/Crop input_ids to size 2,048
|
323 |
-
example[
|
324 |
-
example[
|
325 |
|
326 |
return example
|
327 |
|
328 |
output_dataset_truncated = output_dataset.map(
|
329 |
-
format_cell_features,
|
330 |
-
num_proc=self.nproc
|
331 |
)
|
332 |
return output_dataset_truncated
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
11 |
Usage:
|
12 |
from geneformer import TranscriptomeTokenizer
|
13 |
tk = TranscriptomeTokenizer({"cell_type": "cell_type", "organ_major": "organ_major"}, nproc=4)
|
14 |
+
tk.tokenize_data("data_directory", "output_directory", "output_prefix")
|
15 |
"""
|
16 |
|
17 |
from __future__ import annotations
|
|
|
|
|
|
|
18 |
|
19 |
import logging
|
20 |
+
import pickle
|
21 |
import warnings
|
22 |
+
from pathlib import Path
|
23 |
+
from typing import Literal
|
24 |
|
25 |
import anndata as ad
|
26 |
import loompy as lp
|
|
|
28 |
import scipy.sparse as sp
|
29 |
from datasets import Dataset
|
30 |
|
31 |
+
warnings.filterwarnings("ignore", message=".*The 'nopython' keyword.*")
|
32 |
logger = logging.getLogger(__name__)
|
33 |
|
34 |
GENE_MEDIAN_FILE = Path(__file__).parent / "gene_median_dictionary.pkl"
|
|
|
60 |
self,
|
61 |
custom_attr_name_dict=None,
|
62 |
nproc=1,
|
63 |
+
chunk_size=512,
|
64 |
gene_median_file=GENE_MEDIAN_FILE,
|
65 |
token_dictionary_file=TOKEN_DICTIONARY_FILE,
|
66 |
):
|
|
|
75 |
Values are the names of the attributes in the dataset.
|
76 |
nproc : int
|
77 |
Number of processes to use for dataset mapping.
|
78 |
+
chunk_size: int = 512
|
79 |
+
Chunk size for anndata tokenizer.
|
80 |
gene_median_file : Path
|
81 |
Path to pickle file containing dictionary of non-zero median
|
82 |
gene expression values across Genecorpus-30M.
|
|
|
89 |
# number of processes for dataset mapping
|
90 |
self.nproc = nproc
|
91 |
|
92 |
+
# chunk size for anndata tokenizer
|
93 |
+
self.chunk_size = chunk_size
|
94 |
+
|
95 |
# load dictionary of gene normalization factors
|
96 |
# (non-zero median value of expression across Genecorpus-30M)
|
97 |
with open(gene_median_file, "rb") as f:
|
|
|
116 |
use_generator: bool = False,
|
117 |
):
|
118 |
"""
|
119 |
+
Tokenize .loom files in data_directory and save as tokenized .dataset in output_directory.
|
120 |
|
121 |
Parameters
|
122 |
----------
|
123 |
+
data_directory : Path
|
124 |
Path to directory containing loom files or anndata files
|
125 |
output_directory : Path
|
126 |
Path to directory where tokenized data will be saved as .dataset
|
|
|
134 |
tokenized_cells, cell_metadata = self.tokenize_files(
|
135 |
Path(data_directory), file_format
|
136 |
)
|
137 |
+
tokenized_dataset = self.create_dataset(
|
138 |
+
tokenized_cells, cell_metadata, use_generator=use_generator
|
139 |
+
)
|
140 |
|
141 |
output_path = (Path(output_directory) / output_prefix).with_suffix(".dataset")
|
142 |
tokenized_dataset.save_to_disk(output_path)
|
|
|
147 |
tokenized_cells = []
|
148 |
if self.custom_attr_name_dict is not None:
|
149 |
cell_attr = [attr_key for attr_key in self.custom_attr_name_dict.keys()]
|
150 |
+
cell_metadata = {
|
151 |
+
attr_key: [] for attr_key in self.custom_attr_name_dict.values()
|
152 |
+
}
|
153 |
|
154 |
# loops through directories to tokenize .loom files
|
155 |
file_found = 0
|
|
|
164 |
tokenized_cells += file_tokenized_cells
|
165 |
if self.custom_attr_name_dict is not None:
|
166 |
for k in cell_attr:
|
167 |
+
cell_metadata[self.custom_attr_name_dict[k]] += file_cell_metadata[
|
168 |
+
k
|
169 |
+
]
|
170 |
else:
|
171 |
cell_metadata = None
|
172 |
|
173 |
if file_found == 0:
|
174 |
logger.error(
|
175 |
+
f"No .{file_format} files found in directory {data_directory}."
|
176 |
+
)
|
177 |
raise
|
178 |
return tokenized_cells, cell_metadata
|
179 |
|
180 |
+
def tokenize_anndata(self, adata_file_path, target_sum=10_000):
|
181 |
adata = ad.read(adata_file_path, backed="r")
|
182 |
|
183 |
if self.custom_attr_name_dict is not None:
|
|
|
207 |
var_exists = True
|
208 |
|
209 |
if var_exists:
|
210 |
+
filter_pass_loc = np.where([i == 1 for i in adata.obs["filter_pass"]])[0]
|
|
|
|
|
211 |
elif not var_exists:
|
212 |
print(
|
213 |
f"{adata_file_path} has no column attribute 'filter_pass'; tokenizing all cells."
|
|
|
216 |
|
217 |
tokenized_cells = []
|
218 |
|
219 |
+
for i in range(0, len(filter_pass_loc), self.chunk_size):
|
220 |
+
idx = filter_pass_loc[i : i + self.chunk_size]
|
221 |
|
222 |
+
n_counts = adata[idx].obs["n_counts"].values[:, None]
|
223 |
X_view = adata[idx, coding_miRNA_loc].X
|
224 |
+
X_norm = X_view / n_counts * target_sum / norm_factor_vector
|
225 |
X_norm = sp.csr_matrix(X_norm)
|
226 |
|
227 |
tokenized_cells += [
|
|
|
269 |
var_exists = True
|
270 |
|
271 |
if var_exists:
|
272 |
+
filter_pass_loc = np.where([i == 1 for i in data.ca["filter_pass"]])[0]
|
|
|
|
|
273 |
elif not var_exists:
|
274 |
print(
|
275 |
f"{loom_file_path} has no column attribute 'filter_pass'; tokenizing all cells."
|
|
|
278 |
|
279 |
# scan through .loom files and tokenize cells
|
280 |
tokenized_cells = []
|
281 |
+
for _ix, _selection, view in data.scan(items=filter_pass_loc, axis=1):
|
282 |
# select subview with protein-coding and miRNA genes
|
283 |
subview = view.view[coding_miRNA_loc, :]
|
284 |
|
|
|
305 |
|
306 |
return tokenized_cells, file_cell_metadata
|
307 |
|
308 |
+
def create_dataset(
|
309 |
+
self,
|
310 |
+
tokenized_cells,
|
311 |
+
cell_metadata,
|
312 |
+
use_generator=False,
|
313 |
+
keep_uncropped_input_ids=False,
|
314 |
+
):
|
315 |
print("Creating dataset.")
|
316 |
# create dict for dataset creation
|
317 |
dataset_dict = {"input_ids": tokenized_cells}
|
|
|
320 |
|
321 |
# create dataset
|
322 |
if use_generator:
|
323 |
+
|
324 |
def dict_generator():
|
325 |
for i in range(len(tokenized_cells)):
|
326 |
yield {k: dataset_dict[k][i] for k in dataset_dict.keys()}
|
327 |
+
|
328 |
output_dataset = Dataset.from_generator(dict_generator, num_proc=self.nproc)
|
329 |
else:
|
330 |
output_dataset = Dataset.from_dict(dataset_dict)
|
331 |
+
|
332 |
def format_cell_features(example):
|
333 |
# Store original uncropped input_ids in separate feature
|
334 |
if keep_uncropped_input_ids:
|
335 |
+
example["input_ids_uncropped"] = example["input_ids"]
|
336 |
+
example["length_uncropped"] = len(example["input_ids"])
|
337 |
|
338 |
# Truncate/Crop input_ids to size 2,048
|
339 |
+
example["input_ids"] = example["input_ids"][0:2048]
|
340 |
+
example["length"] = len(example["input_ids"])
|
341 |
|
342 |
return example
|
343 |
|
344 |
output_dataset_truncated = output_dataset.map(
|
345 |
+
format_cell_features, num_proc=self.nproc
|
|
|
346 |
)
|
347 |
return output_dataset_truncated
|
|
|
|
|
|