Upload model to Hugging Face
Browse files- PPO-default.zip +2 -2
- PPO-default/data +16 -16
- PPO-default/policy.optimizer.pth +1 -1
- PPO-default/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
PPO-default.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:716a8ee7ba08cd0c42f09034c669d0ccbfb51717a148ad71279d5c3e50fd8dbd
|
3 |
+
size 136735
|
PPO-default/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8AAIA/
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.0649599999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc47ce053f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc47ce05480>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc47ce05510>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc47ce055a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc47ce05630>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc47ce056c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc47ce05750>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc47ce057e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc47ce05870>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc47ce05900>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc47ce05990>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc47ce05a20>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc47ce01b00>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1675310450205312370,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8AAIA/AACAPwAAgD/Sqnk/AACAP5g9Mj8AAIA/AACAP3Vacj4AAIA/+cB2P5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsDhpSMAUOUdJRSlC4="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.0649599999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVyQkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKnP///4wBbJRLAYwBdJRHQFu68cuJ1q51fZQoaAZLmGgHS8loCEdAW7yGlANXo3V9lChoBkuPaAdLyWgIR0BbwdWEK3NLdX2UKGgGSsP///9oB0szaAhHQFvJN0vGp/B1fZQoaAZLmGgHS8loCEdAW9UOBlMAWHV9lChoBkuWaAdLyWgIR0Bb2A7cO9WZdX2UKGgGS5loB0vJaAhHQFvZorFwT/R1fZQoaAZK+v///2gHS4doCEdAW9zSkTHsC3V9lChoBkq5////aAdLO2gIR0Bb3dahYeT3dX2UKGgGSsf///9oB0s6aAhHQFviMQEpy6t1fZQoaAZKyP///2gHS0JoCEdAW+aDOC5Et3V9lChoBkrR////aAdLU2gIR0Bb8nAM2FWXdX2UKGgGS45oB0vJaAhHQFv1XDWK/Eh1fZQoaAZLbmgHS8loCEdAW/rvTgEU03V9lChoBkuOaAdLyWgIR0Bb/0dilSCOdX2UKGgGS5FoB0vJaAhHQFwPZn+Q2dd1fZQoaAZLmWgHS8loCEdAXBJQaaTfSHV9lChoBkuOaAdLyWgIR0BcF+YplSTAdX2UKGgGSrb///9oB0svaAhHQFwZNB4Uvf11fZQoaAZLiGgHS8loCEdAXBxZSvTw2HV9lChoBkq3////aAdLK2gIR0BcHlFDv3JxdX2UKGgGSu3///9oB0tyaAhHQFwgNWEK3NN1fZQoaAZKsf///2gHSxpoCEdAXCBbr1M/QnV9lChoBkrR////aAdLRWgIR0BcKk47zTWodX2UKGgGSuz///9oB0t2aAhHQFwqn62v0RR1fZQoaAZKrP///2gHSxxoCEdAXC63UhFEzHV9lChoBksDaAdLiWgIR0BcMnWe6I3zdX2UKGgGS6BoB0vJaAhHQF2COhkAggZ1fZQoaAZKsP///2gHSyhoCEdAXYgJrtVrAXV9lChoBkuUaAdLyWgIR0BdjFJL/S6UdX2UKGgGSsD///9oB0s3aAhHQF2QI1tO2y91fZQoaAZKnP///2gHSwFoCEdAXZBkH2RJVnV9lChoBkuUaAdLyWgIR0BdkOy3Td+HdX2UKGgGS4toB0vJaAhHQF2UygwoLG91fZQoaAZKtv///2gHSyloCEdAXZq87IT4+XV9lChoBkqf////aAdLBGgIR0Bdm2oBJZntdX2UKGgGSvz///9oB0uBaAhHQF2fo8p1A7h1fZQoaAZKwv///2gHSzNoCEdAXaLmaH9FWnV9lChoBkqd////aAdLCmgIR0BdpG2b5M11dX2UKGgGSuD///9oB0uGaAhHQF2k4Pf8/EB1fZQoaAZLq2gHS8loCEdAXa4cFQl8gXV9lChoBkrU////aAdLTWgIR0Bdr7N8ma6SdX2UKGgGSq3///9oB0sZaAhHQF2zXbM5fdB1fZQoaAZLGmgHS8NoCEdAXbwpQUHpr3V9lChoBkuSaAdLyWgIR0Bdwgi3XqZ/dX2UKGgGSsj///9oB0tNaAhHQF3HVoHs1Kp1fZQoaAZKtv///2gHSy5oCEdAXcjOAy2x6nV9lChoBkuTaAdLyWgIR0Bdy3z6JqIrdX2UKGgGS49oB0vJaAhHQF3QpmmLtNV1fZQoaAZKyP///2gHS1RoCEdAXdes3hn8K3V9lChoBkqq////aAdLEWgIR0Bd2jJMg2ZRdX2UKGgGS5BoB0vJaAhHQF3kpi7TUiJ1fZQoaAZLA2gHS5BoCEdAXeWeqaPS2HV9lChoBkuZaAdLyWgIR0Bd5jK5kK/mdX2UKGgGSp3///9oB0sDaAhHQF3mueBg/kh1fZQoaAZK4////2gHS1xoCEdAXefXJ5mh/XV9lChoBkri////aAdLbmgIR0Bd96GL1mJ4dX2UKGgGSp3///9oB0sDaAhHQF34KP4mCy11fZQoaAZKnf///2gHSwJoCEdAXfiLgn+hoXV9lChoBksCaAdLjGgIR0Bd+zMJQcghdX2UKGgGSrj///9oB0sxaAhHQF4CSfUWl/J1fZQoaAZLlmgHS8loCEdAXgJLPD50sHV9lChoBkuWaAdLyWgIR0BeA0EovzvrdX2UKGgGS6doB0vJaAhHQF4VrdFfAsV1fZQoaAZK9f///2gHS45oCEdAXhbTTfBN23V9lChoBkuYaAdLyWgIR0BeH2bgCOm0dX2UKGgGS4hoB0vJaAhHQF4gSBshxHZ1fZQoaAZKuP///2gHSzBoCEdAXic4ZMtbtHV9lChoBkr/////aAdLjGgIR0BeKh4D9wWFdX2UKGgGSqf///9oB0sYaAhHQF4q2dupCKJ1fZQoaAZK2v///2gHS1loCEdAXiyWpqASWnV9lChoBkqo////aAdLG2gIR0BeMIphF3INdX2UKGgGSrb///9oB0soaAhHQF4w3B55Z8t1fZQoaAZLgmgHS8loCEdAXjRdPci4a3V9lChoBkrP////aAdLTmgIR0BeNdcjZ+QVdX2UKGgGSrX///9oB0sqaAhHQF43JOWSlnB1fZQoaAZKqP///2gHSzloCEdAXj9eLNwBHXV9lChoBksAaAdLi2gIR0BeRPYvnKW+dX2UKGgGS5xoB0vJaAhHQF5RiiqQzUJ1fZQoaAZLnGgHS8loCEdAXlMBLf1pTXV9lChoBkrD////aAdLLmgIR0BeWarq+rU9dX2UKGgGSxJoB0ugaAhHQF5cLUTcqON1fZQoaAZLgGgHS8loCEdAXlygyuZCwHV9lChoBkrf////aAdLX2gIR0BeakcsDnvEdX2UKGgGS49oB0vJaAhHQF5uxs2vStx1fZQoaAZKnP///2gHSwFoCEdAXm8EkjX4CnV9lChoBkuYaAdLyWgIR0BedufVZs9CdX2UKGgGSzpoB0vGaAhHQF54/JeVs1t1fZQoaAZKwf///2gHSytoCEdAXn1A9mpVCHV9lChoBkuVaAdLyWgIR0Beh4oNNJvpdX2UKGgGS4NoB0vJaAhHQF6MMEzO5ax1fZQoaAZKnP///2gHSwFoCEdAXoxupCKJmHV9lChoBkuiaAdLyWgIR0BeliiM5wOwdX2UKGgGSqH///9oB0sOaAhHQF6YQY1pCa91fZQoaAZLgWgHS8loCEdAXpqAH3UQTXV9lChoBkr4////aAdLkWgIR0BenM3++/QCdX2UKGgGSwxoB0uNaAhHQF6hBxPwd811fZQoaAZKzP///2gHS0toCEdAXqNYEGJN03V9lChoBkq6////aAdLNWgIR0BepKpxWDHwdX2UKGgGSqv///9oB0saaAhHQF6lCVKPGQ11ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
PPO-default/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 82809
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bf2de655a33791b8a75e93202104735f0b6a53a562c439408fb8b93aa1a05f0
|
3 |
size 82809
|
PPO-default/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 40833
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89702bed8ac6691f6892eab18f6870397a39032c90142fc4b27d1d940237c93e
|
3 |
size 40833
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: Roomba
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: Roomba
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 97.60 +/- 128.05
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fce9cf353f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fce9cf35480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fce9cf35510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fce9cf355a0>", "_build": "<function ActorCriticPolicy._build at 0x7fce9cf35630>", "forward": "<function ActorCriticPolicy.forward at 0x7fce9cf356c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fce9cf35750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fce9cf357e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fce9cf35870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fce9cf35900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fce9cf35990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fce9cf35a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fce9cf31ac0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[0. 0. 0.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675309977804194538, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD/AgC4/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVugoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQID4X9cbBGiMAWyUS5iMAXSUR0BbF/iHZbpvdX2UKGgGR0CAwlv0h/y5aAdLLmgIR0BbHpqdpZfVdX2UKGgGSwBoB0vJaAhHQFsjU+cH4XZ1fZQoaAZHQIE1PHJcPe5oB0sqaAhHQFskwblzU7V1fZQoaAZLAGgHS8loCEdAWyy46Oo5xXV9lChoBksAaAdLyWgIR0BbM460Y0l7dX2UKGgGR0CAx76Skj5caAdLrWgIR0BbPEN4JNTMdX2UKGgGR0CA4vVNpM6BaAdLo2gIR0BbPEXcgyM2dX2UKGgGR0CBKvGvwEyMaAdLE2gIR0BbPxG2CulodX2UKGgGSwBoB0vJaAhHQFtJvpyIYWN1fZQoaAZLAGgHS8loCEdAW1CWUr08NnV9lChoBksAaAdLyWgIR0BbWUfkmx+sdX2UKGgGR0CAhI8EFGG3aAdLfmgIR0BbW+tW+49YdX2UKGgGSwBoB0vJaAhHQFtcElme18d1fZQoaAZHQID5sgIQe3hoB0tZaAhHQFtovRJEpiJ1fZQoaAZLAGgHS8loCEdAW22VhTfixXV9lChoBksAaAdLyWgIR0BbdkOiFj/ddX2UKGgGSwBoB0vJaAhHQFt49S/CZWt1fZQoaAZHQIC76yhSLqFoB0uCaAhHQFuAUVBUrCp1fZQoaAZHQIEdPO2RaHNoB0slaAhHQFuFqkM1CPZ1fZQoaAZLAGgHS8loCEdAW4XQ2MsH0XV9lChoBkdAgNuPGQ0XQGgHSwJoCEdAW4YzTF2mpHV9lChoBkdAgScPt2LYPGgHSxBoCEdAW4g7JW/8EXV9lChoBksAaAdLyWgIR0Bbk3VbzK9xdX2UKGgGR0CBQ3ndweeWaAdLVGgIR0BblFT3qRlpdX2UKGgGSwBoB0vJaAhHQFuWQSi/O+t1fZQoaAZHQIDCFajesPtoB0twaAhHQFuWkk8ifQN1fZQoaAZHQIDuaASWZ7ZoB0swaAhHQFubb6xgRbt1fZQoaAZHQIFCdoexOcloB0sbaAhHQFufXiR4hU11fZQoaAZHQIDroKIBRyhoB0sXaAhHQFuiu8scyWR1fZQoaAZLAGgHS8loCEdAW7CmzjWCmXV9lChoBksAaAdLyWgIR0Bbs1eSjgyedX2UKGgGSwBoB0vJaAhHQFuzpJf6XSl1fZQoaAZHQIEnHiR4hU1oB0sLaAhHQFu1TvAoG6h1fZQoaAZHQIE76eoUBXFoB0soaAhHQFu7FxGUfPp1fZQoaAZHQIDJnfIjnmtoB0s9aAhHQFu8ZM+NcW11fZQoaAZHQIEav7UG3WpoB0sSaAhHQFu/DLKV6eJ1fZQoaAZLAGgHS8loCEdAW8AAKfFrEnV9lChoBkdAgM1qvFFUhmgHSwZoCEdAW8AWqLjxTnV9lChoBksAaAdLyWgIR0BdCSEpRXOodX2UKGgGR0CBa3oSteUqaAdLf2gIR0BdDWalUIcBdX2UKGgGR0CBCB1mJ3xGaAdLFWgIR0BdEIAKfFrEdX2UKGgGSwBoB0vJaAhHQF0TfbKzRhN1fZQoaAZHQIEDK1G9YfZoB0vBaAhHQF0XEyLyc1B1fZQoaAZHQIEhJq46Oo5oB0slaAhHQF0Y9LHuJDV1fZQoaAZHQICCsg0TDfpoB0u6aAhHQF0kI+W4Vh11fZQoaAZHQICcittALRdoB0s6aAhHQF0sfMOf/WF1fZQoaAZLAGgHS8loCEdAXS2hM8HObHV9lChoBksAaAdLyWgIR0BdNBeHBUJfdX2UKGgGSwBoB0vJaAhHQF019YOlO451fZQoaAZHQIFfDp1RtP5oB0s2aAhHQF078274BWB1fZQoaAZHQIFUftnf2sdoB0txaAhHQF0+DP4VRDV1fZQoaAZHQIDGGnbZezFoB0s8aAhHQF1Eq5sj3VV1fZQoaAZHQIDW6SPluFZoB0sdaAhHQF1I5MURFql1fZQoaAZLAGgHS8loCEdAXUnIBBAv+XV9lChoBkdAgJWbsOXmeWgHS0VoCEdAXVL7UG3WnXV9lChoBksAaAdLyWgIR0BdU0oKD017dX2UKGgGSwBoB0vJaAhHQF1bZBcAzYV1fZQoaAZLAGgHS8loCEdAXWbmW+oLonV9lChoBkdAgKt66J66a2gHS45oCEdAXW+3+dbxE3V9lChoBksAaAdLyWgIR0BdcBPj4pMIdX2UKGgGSwBoB0vJaAhHQF1wYMvysjp1fZQoaAZHQIGIAs3AEdNoB0t6aAhHQF2Bj2SMcZN1fZQoaAZLAGgHS8loCEdAXYPdepn6EnV9lChoBksAaAdLyWgIR0BdjKiO/+KkdX2UKGgGSwBoB0vJaAhHQF2NPQOWjXZ1fZQoaAZHQIEYRvrGBFxoB0sbaAhHQF2QrVvuPWB1fZQoaAZLAGgHS8loCEdAXZ6AavRqoXV9lChoBksAaAdLyWgIR0BdoNAC4jKQdX2UKGgGSwBoB0vJaAhHQF2qHs1KoQ51fZQoaAZLAGgHS8loCEdAXa2MwUQCjnV9lChoBkdAgJtrOAy2yGgHS1loCEdAXbbzVc2R73V9lChoBkdAgPXdzwMH8mgHS0ZoCEdAXbezMRpUP3V9lChoBkdAgbNqKpDNQmgHS6FoCEdAXbgqJ/G2kXV9lChoBkdAgQWbuUliSmgHSxdoCEdAXbqFwkxASnV9lChoBksAaAdLyWgIR0Bdu8/6fra/dX2UKGgGR0CAwBE2pAD8aAdLNmgIR0BdwB2KVII4dX2UKGgGR0CAd5kwN9YwaAdLVGgIR0Bdx/LDAJswdX2UKGgGR0CBiGNoakylaAdLimgIR0Bdy+V9nbqRdX2UKGgGR0CBcVY4hllLaAdLf2gIR0Bd0ncUM5OrdX2UKGgGR0CBB44FzMibaAdLCmgIR0Bd0/vKEFnqdX2UKGgGR0CA6lz+3pfQaAdLBGgIR0Bd1KdUbT+edX2UKGgGSwBoB0vJaAhHQF3X2TgVGkN1fZQoaAZHQIDtBIatLctoB0staAhHQF3bPMjeKsN1fZQoaAZHQIDV3qcEvCdoB0t5aAhHQF3dqrBCUot1fZQoaAZHQIDmgvg3tKJoB0sWaAhHQF3eltj0+Tx1fZQoaAZHQIC1/nB+F11oB0upaAhHQF3g47A+IM11fZQoaAZHQIBonWattANoB0tUaAhHQF3kU6PsAvN1fZQoaAZHQIFGhVAAyVRoB0tlaAhHQF3sdX1anrJ1fZQoaAZHQIEbiH9FWn1oB0skaAhHQF3xrIYFaB91fZQoaAZHQIEJKFPBSDRoB0scaAhHQF31vqTr3TN1fZQoaAZHQICd3LcKw6hoB0uoaAhHQF35PIGQjlh1fZQoaAZLAGgHS8loCEdAXfvTqjafz3V9lChoBkdAgMDPhhpg1GgHS01oCEdAXgD0Bfa6BnV9lChoBksAaAdLyWgIR0BeAYdQwblzdX2UKGgGR0CBDZtoi9qUaAdLiWgIR0BeFQz+FUQ1dX2UKGgGSwBoB0vJaAhHQF4WMXrMTvl1fZQoaAZLAGgHS8loCEdAXhjIlt0mt3V9lChoBksAaAdLyWgIR0BeHeaWom5UdX2UKGgGR0CA1Wt0V8CxaAdLg2gIR0BeKQ8fV7QcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.35 # 64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc47ce053f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc47ce05480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc47ce05510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc47ce055a0>", "_build": "<function ActorCriticPolicy._build at 0x7fc47ce05630>", "forward": "<function ActorCriticPolicy.forward at 0x7fc47ce056c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc47ce05750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc47ce057e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc47ce05870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc47ce05900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc47ce05990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc47ce05a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc47ce01b00>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[0. 0. 0.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675310450205312370, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8AAIA/AACAPwAAgD/Sqnk/AACAP5g9Mj8AAIA/AACAP3Vacj4AAIA/+cB2P5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVyQkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKnP///4wBbJRLAYwBdJRHQFu68cuJ1q51fZQoaAZLmGgHS8loCEdAW7yGlANXo3V9lChoBkuPaAdLyWgIR0BbwdWEK3NLdX2UKGgGSsP///9oB0szaAhHQFvJN0vGp/B1fZQoaAZLmGgHS8loCEdAW9UOBlMAWHV9lChoBkuWaAdLyWgIR0Bb2A7cO9WZdX2UKGgGS5loB0vJaAhHQFvZorFwT/R1fZQoaAZK+v///2gHS4doCEdAW9zSkTHsC3V9lChoBkq5////aAdLO2gIR0Bb3dahYeT3dX2UKGgGSsf///9oB0s6aAhHQFviMQEpy6t1fZQoaAZKyP///2gHS0JoCEdAW+aDOC5Et3V9lChoBkrR////aAdLU2gIR0Bb8nAM2FWXdX2UKGgGS45oB0vJaAhHQFv1XDWK/Eh1fZQoaAZLbmgHS8loCEdAW/rvTgEU03V9lChoBkuOaAdLyWgIR0Bb/0dilSCOdX2UKGgGS5FoB0vJaAhHQFwPZn+Q2dd1fZQoaAZLmWgHS8loCEdAXBJQaaTfSHV9lChoBkuOaAdLyWgIR0BcF+YplSTAdX2UKGgGSrb///9oB0svaAhHQFwZNB4Uvf11fZQoaAZLiGgHS8loCEdAXBxZSvTw2HV9lChoBkq3////aAdLK2gIR0BcHlFDv3JxdX2UKGgGSu3///9oB0tyaAhHQFwgNWEK3NN1fZQoaAZKsf///2gHSxpoCEdAXCBbr1M/QnV9lChoBkrR////aAdLRWgIR0BcKk47zTWodX2UKGgGSuz///9oB0t2aAhHQFwqn62v0RR1fZQoaAZKrP///2gHSxxoCEdAXC63UhFEzHV9lChoBksDaAdLiWgIR0BcMnWe6I3zdX2UKGgGS6BoB0vJaAhHQF2COhkAggZ1fZQoaAZKsP///2gHSyhoCEdAXYgJrtVrAXV9lChoBkuUaAdLyWgIR0BdjFJL/S6UdX2UKGgGSsD///9oB0s3aAhHQF2QI1tO2y91fZQoaAZKnP///2gHSwFoCEdAXZBkH2RJVnV9lChoBkuUaAdLyWgIR0BdkOy3Td+HdX2UKGgGS4toB0vJaAhHQF2UygwoLG91fZQoaAZKtv///2gHSyloCEdAXZq87IT4+XV9lChoBkqf////aAdLBGgIR0Bdm2oBJZntdX2UKGgGSvz///9oB0uBaAhHQF2fo8p1A7h1fZQoaAZKwv///2gHSzNoCEdAXaLmaH9FWnV9lChoBkqd////aAdLCmgIR0BdpG2b5M11dX2UKGgGSuD///9oB0uGaAhHQF2k4Pf8/EB1fZQoaAZLq2gHS8loCEdAXa4cFQl8gXV9lChoBkrU////aAdLTWgIR0Bdr7N8ma6SdX2UKGgGSq3///9oB0sZaAhHQF2zXbM5fdB1fZQoaAZLGmgHS8NoCEdAXbwpQUHpr3V9lChoBkuSaAdLyWgIR0Bdwgi3XqZ/dX2UKGgGSsj///9oB0tNaAhHQF3HVoHs1Kp1fZQoaAZKtv///2gHSy5oCEdAXcjOAy2x6nV9lChoBkuTaAdLyWgIR0Bdy3z6JqIrdX2UKGgGS49oB0vJaAhHQF3QpmmLtNV1fZQoaAZKyP///2gHS1RoCEdAXdes3hn8K3V9lChoBkqq////aAdLEWgIR0Bd2jJMg2ZRdX2UKGgGS5BoB0vJaAhHQF3kpi7TUiJ1fZQoaAZLA2gHS5BoCEdAXeWeqaPS2HV9lChoBkuZaAdLyWgIR0Bd5jK5kK/mdX2UKGgGSp3///9oB0sDaAhHQF3mueBg/kh1fZQoaAZK4////2gHS1xoCEdAXefXJ5mh/XV9lChoBkri////aAdLbmgIR0Bd96GL1mJ4dX2UKGgGSp3///9oB0sDaAhHQF34KP4mCy11fZQoaAZKnf///2gHSwJoCEdAXfiLgn+hoXV9lChoBksCaAdLjGgIR0Bd+zMJQcghdX2UKGgGSrj///9oB0sxaAhHQF4CSfUWl/J1fZQoaAZLlmgHS8loCEdAXgJLPD50sHV9lChoBkuWaAdLyWgIR0BeA0EovzvrdX2UKGgGS6doB0vJaAhHQF4VrdFfAsV1fZQoaAZK9f///2gHS45oCEdAXhbTTfBN23V9lChoBkuYaAdLyWgIR0BeH2bgCOm0dX2UKGgGS4hoB0vJaAhHQF4gSBshxHZ1fZQoaAZKuP///2gHSzBoCEdAXic4ZMtbtHV9lChoBkr/////aAdLjGgIR0BeKh4D9wWFdX2UKGgGSqf///9oB0sYaAhHQF4q2dupCKJ1fZQoaAZK2v///2gHS1loCEdAXiyWpqASWnV9lChoBkqo////aAdLG2gIR0BeMIphF3INdX2UKGgGSrb///9oB0soaAhHQF4w3B55Z8t1fZQoaAZLgmgHS8loCEdAXjRdPci4a3V9lChoBkrP////aAdLTmgIR0BeNdcjZ+QVdX2UKGgGSrX///9oB0sqaAhHQF43JOWSlnB1fZQoaAZKqP///2gHSzloCEdAXj9eLNwBHXV9lChoBksAaAdLi2gIR0BeRPYvnKW+dX2UKGgGS5xoB0vJaAhHQF5RiiqQzUJ1fZQoaAZLnGgHS8loCEdAXlMBLf1pTXV9lChoBkrD////aAdLLmgIR0BeWarq+rU9dX2UKGgGSxJoB0ugaAhHQF5cLUTcqON1fZQoaAZLgGgHS8loCEdAXlygyuZCwHV9lChoBkrf////aAdLX2gIR0BeakcsDnvEdX2UKGgGS49oB0vJaAhHQF5uxs2vStx1fZQoaAZKnP///2gHSwFoCEdAXm8EkjX4CnV9lChoBkuYaAdLyWgIR0BedufVZs9CdX2UKGgGSzpoB0vGaAhHQF54/JeVs1t1fZQoaAZKwf///2gHSytoCEdAXn1A9mpVCHV9lChoBkuVaAdLyWgIR0Beh4oNNJvpdX2UKGgGS4NoB0vJaAhHQF6MMEzO5ax1fZQoaAZKnP///2gHSwFoCEdAXoxupCKJmHV9lChoBkuiaAdLyWgIR0BeliiM5wOwdX2UKGgGSqH///9oB0sOaAhHQF6YQY1pCa91fZQoaAZLgWgHS8loCEdAXpqAH3UQTXV9lChoBkr4////aAdLkWgIR0BenM3++/QCdX2UKGgGSwxoB0uNaAhHQF6hBxPwd811fZQoaAZKzP///2gHS0toCEdAXqNYEGJN03V9lChoBkq6////aAdLNWgIR0BepKpxWDHwdX2UKGgGSqv///9oB0saaAhHQF6lCVKPGQ11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.35 # 64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f67d514af5f54585b88ff554f05c4f96de36cfa68e25e07505c05de34e4534f
|
3 |
+
size 1167964
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 97.6, "std_reward": 128.05327016519337, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T20:02:58.467391"}
|