Upload model to Hugging Face
Browse files- PPO-default.zip +2 -2
- PPO-default/data +16 -16
- PPO-default/policy.optimizer.pth +1 -1
- PPO-default/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
PPO-default.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e29a8a1b1ad620ac18a6cce00b8dfcde9c2b9a4faae2def44e3520eabde464d6
|
3 |
+
size 136711
|
PPO-default/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
@@ -48,7 +48,7 @@
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -70,7 +70,7 @@
|
|
70 |
"_current_progress_remaining": -0.0649599999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb0fb313f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb0fb31480>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb0fb31510>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb0fb315a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcb0fb31630>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcb0fb316c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb0fb31750>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb0fb317e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcb0fb31870>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb0fb31900>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb0fb31990>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb0fb31a20>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcb0fb2dbc0>"
|
21 |
},
|
22 |
"verbose": true,
|
23 |
"policy_kwargs": {},
|
|
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1675308159984252897,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP6ozAz8AAIA/AACAPwAAgD8oOBY/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsDhpSMAUOUdJRSlC4="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
70 |
"_current_progress_remaining": -0.0649599999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVtwkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKxv///4wBbJRLSYwBdJRHQFqzv8ZUDMh1fZQoaAZLcGgHS8loCEdAWr/MGHHmzXV9lChoBktmaAdLyWgIR0Bawk6YE4ecdX2UKGgGSwZoB0vAaAhHQFrCnLJSzgN1fZQoaAZKpP///2gHSw1oCEdAWsSONo8IRnV9lChoBkrh////aAdLc2gIR0BaxH+yZ8a5dX2UKGgGStH///9oB0tWaAhHQFrO4Z/CqId1fZQoaAZKvP///2gHSzRoCEdAWtZTn7pFC3V9lChoBkrg////aAdLg2gIR0Ba13pbD/EPdX2UKGgGS1xoB0vJaAhHQFrdAIIF/x51fZQoaAZKyv///2gHS0RoCEdAWuA6RyOrAHV9lChoBktlaAdLyWgIR0Ba4X40uUUxdX2UKGgGSrT///9oB0tEaAhHQFrqB4lhPTJ1fZQoaAZK0f///2gHS15oCEdAWu77hvR7Z3V9lChoBkrT////aAdLgWgIR0Ba77mp2ll9dX2UKGgGS2doB0vJaAhHQFr0jIaLn9x1fZQoaAZKz////2gHS21oCEdAWv9OwgTyrnV9lChoBkqh////aAdLFGgIR0BbAj3VTaTPdX2UKGgGS25oB0vJaAhHQFsHBKtga3t1fZQoaAZKp////2gHSyNoCEdAWwwS00FbFHV9lChoBktxaAdLyWgIR0BbDBHskY4ydX2UKGgGS2doB0vJaAhHQFsRio86mwd1fZQoaAZKyP///2gHS0loCEdAWxaVLSNOunV9lChoBktFaAdLyWgIR0BbHztgKF7EdX2UKGgGSr7///9oB0tiaAhHQFsfsV+I/JN1fZQoaAZLVGgHS8loCEdAWykFnqVyFXV9lChoBkrO////aAdLhGgIR0BbMoIKMNtqdX2UKGgGSsj///9oB0tFaAhHQFsy+EytV7x1fZQoaAZLZ2gHS8loCEdAWzOIZZSvT3V9lChoBkql////aAdLGmgIR0BbNnhsImgKdX2UKGgGSqf///9oB0sVaAhHQFs2s2eg+Ql1fZQoaAZLVGgHS8loCEdAWzxgXuVopXV9lChoBkrI////aAdLWGgIR0BbQ1XV9Wp7dX2UKGgGSq3///9oB0shaAhHQFtIJSR8twt1fZQoaAZLd2gHS8loCEdAW1AleF+NLnV9lChoBktoaAdLyWgIR0BbU4287IT5dX2UKGgGSu////9oB0ukaAhHQFtUJUo8ZDR1fZQoaAZK2v///2gHS35oCEdAW1pjnV5KOHV9lChoBkrH////aAdLUWgIR0BbW/8AJb+tdX2UKGgGSrb///9oB0tJaAhHQFtew6hg3Lp1fZQoaAZKvP///2gHS0JoCEdAW2QEs8PnS3V9lChoBkt0aAdLyWgIR0BbcJFgDzRQdX2UKGgGS3poB0vJaAhHQFt4yQPqcEx1fZQoaAZLZmgHS8loCEdAW3uKLsKLKnV9lChoBkrK////aAdLUGgIR0BbfCP2f02+dX2UKGgGS2FoB0vJaAhHQFuA4R28qWl1fZQoaAZKrf///2gHSy5oCEdAW4JVjqfOEHV9lChoBktNaAdLyWgIR0Bc0jy8SPELdX2UKGgGS25oB0vJaAhHQFzVflp48lp1fZQoaAZLZWgHS8loCEdAXNo6Mir1d3V9lChoBktpaAdLyWgIR0Bc26nR9gF5dX2UKGgGS3RoB0vJaAhHQFzu/D+BH091fZQoaAZLbGgHS8loCEdAXPI98qnWKHV9lChoBkqi////aAdLE2gIR0Bc9Qdn003wdX2UKGgGS1ZoB0vJaAhHQFz3E8aGYa51fZQoaAZLamgHS8loCEdAXPiC04R283V9lChoBktjaAdLyWgIR0BdC9jPOY6XdX2UKGgGSuD///9oB0uWaAhHQF0N6kIomXx1fZQoaAZLdGgHS8loCEdAXRHkKeCkGnV9lChoBkr4////aAdLxWgIR0BdE2QXAM2FdX2UKGgGSqP///9oB0sdaAhHQF0XlolD4QB1fZQoaAZK+P///2gHS6JoCEdAXSUvcrRSg3V9lChoBktyaAdLyWgIR0BdKNELH+6zdX2UKGgGS2loB0vJaAhHQF0uwx33Ycx1fZQoaAZKsv///2gHSyxoCEdAXS855qubJHV9lChoBksBaAdLqGgIR0BdL83AEdNndX2UKGgGSqT///9oB0tAaAhHQF04HsC1Z1V1fZQoaAZLXmgHS8loCEdAXUI078vVVnV9lChoBkrJ////aAdLVmgIR0BdRIDxLCemdX2UKGgGS19oB0vJaAhHQF1MJ8fFJg91fZQoaAZLe2gHS8loCEdAXUy3XqZ+hHV9lChoBkt7aAdLyWgIR0BdXvfCQ9zPdX2UKGgGS1xoB0vJaAhHQF1hQUpNKyx1fZQoaAZLcWgHS8loCEdAXWjmRvFWGXV9lChoBkuAaAdLyWgIR0BdaXWjGkvcdX2UKGgGStH///9oB0tlaAhHQF1tl4TsY2t1fZQoaAZK1f///2gHS3NoCEdAXXHeSB9TgnV9lChoBkrD////aAdLU2gIR0BdeYSQHRkVdX2UKGgGS21oB0vJaAhHQF2FxzJZGKB1fZQoaAZLV2gHS8loCEdAXYZXIU8FIXV9lChoBkrf////aAdLp2gIR0Bdidd7fHghdX2UKGgGSqj///9oB0sYaAhHQF2J7tiQT251fZQoaAZLYGgHS8loCEdAXZZfICEHuHV9lChoBkqo////aAdLFWgIR0BdmW+j/MnrdX2UKGgGS2ZoB0vJaAhHQF2iv0h/y5J1fZQoaAZLa2gHS8loCEdAXaa12JSBLHV9lChoBkt2aAdLyWgIR0Bdpsk+otL+dX2UKGgGSqD///9oB0seaAhHQF2nQg9vCMx1fZQoaAZKsP///2gHSyVoCEdAXaw580DU3HV9lChoBktiaAdLyWgIR0BdtmbgCOm0dX2UKGgGSun///9oB0uiaAhHQF3DRRuTA311fZQoaAZLYWgHS8loCEdAXcOgezUqhHV9lChoBktoaAdLyWgIR0BdxBUrCm/GdX2UKGgGSq3///9oB0smaAhHQF3Jjmjj7yh1fZQoaAZKuf///2gHSzloCEdAXcv4EfT1CnV9lChoBksIaAdLsGgIR0Bdz9CmdiDvdX2UKGgGSs7///9oB0tyaAhHQF3Z9rXUYsN1fZQoaAZLb2gHS8loCEdAXeBZA6dUbXV9lChoBktqaAdLyWgIR0Bd6MSsbNr1dX2UKGgGSvf///9oB0u5aAhHQF3qXAuZkTZ1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
PPO-default/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 82809
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cda92f0a6a671f2d4d79468cec723d3542d7a49705e18c70f98ee681bdf72c1
|
3 |
size 82809
|
PPO-default/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 40833
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5938290ce126c85242ee69ad78156ac67f52ecf933c31335d8b25c9b2be7f84f
|
3 |
size 40833
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: Roomba
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: Roomba
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 45.60 +/- 108.13
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94c4c35360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94c4c353f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94c4c35480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94c4c35510>", "_build": "<function ActorCriticPolicy._build at 0x7f94c4c355a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f94c4c35630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94c4c356c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94c4c35750>", "_predict": "<function ActorCriticPolicy._predict at 0x7f94c4c357e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94c4c35870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94c4c35900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94c4c35990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f94c4c31540>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[0. 0. 0.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675307914449286626, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8GTIg+AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbAkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRLt4wBbJRLyYwBdJRHQFqqvbXYlIF1fZQoaAZKrv///2gHSxhoCEdAWq5RUFSsKnV9lChoBkutaAdLyWgIR0BawF+AmReUdX2UKGgGS7FoB0vJaAhHQFrCFb3XZoR1fZQoaAZLpGgHS8loCEdAWseTOgQHzHV9lChoBkukaAdLyWgIR0BayyMtK7I1dX2UKGgGS69oB0vJaAhHQFrdO4G2TgV1fZQoaAZLs2gHS8loCEdAWt7xjJ+2E3V9lChoBkskaAdLoWgIR0Ba4kH6dlNDdX2UKGgGS65oB0vJaAhHQFrkidrftQd1fZQoaAZKrf///2gHSxtoCEdAWuZHLA57xHV9lChoBkrD////aAdLMmgIR0Ba69HMEA5rdX2UKGgGSx5oB0ukaAhHQFr2r8R+SbJ1fZQoaAZLq2gHS8loCEdAWvpqdpZfUnV9lChoBkstaAdLpmgIR0Ba/jpLVWjodX2UKGgGSzNoB0utaAhHQFsEx1gYxcp1fZQoaAZK+P///2gHS21oCEdAWwaTFERao3V9lChoBku5aAdLyWgIR0BbF1Li++M7dX2UKGgGS6RoB0vJaAhHQFsbHKwIMSd1fZQoaAZLt2gHS8loCEdAWyGmLtNSInV9lChoBkrj////aAdLU2gIR0BbI1/c32mIdX2UKGgGS7BoB0vJaAhHQFsjhpxm03R1fZQoaAZLKWgHS61oCEdAWzQMNMGorHV9lChoBkuvaAdLyWgIR0BbPon4O+ZgdX2UKGgGS6xoB0vJaAhHQFtAP4VRDTl1fZQoaAZLrGgHS8loCEdAW0BmSQo1DXV9lChoBkuvaAdLyWgIR0BbUNvbXYlIdX2UKGgGSzxoB0u+aAhHQFtZ0XgtOEd1fZQoaAZLpWgHS8loCEdAW10W69TP0XV9lChoBkuwaAdLyWgIR0BbXT1kDp1SdX2UKGgGSt3///9oB0tJaAhHQFtnsfJV81J1fZQoaAZLsmgHS8loCEdAW23VrhzeXXV9lChoBksPaAdLiGgIR0BbcL9ycTakdX2UKGgGSzBoB0ujaAhHQFtxf0mMOwx1fZQoaAZK+P///2gHS3BoCEdAW34IQe3hGnV9lChoBks+aAdLuWgIR0BbgnWvr4WUdX2UKGgGSrX///9oB0seaAhHQFuG0QbuMMt1fZQoaAZLoGgHS8loCEdAW43JJXhfjXV9lChoBkugaAdLyWgIR0BbjoVRDTjOdX2UKGgGSxJoB0uRaAhHQFuTGMXJo011fZQoaAZLF2gHS4xoCEdAW6K59Vmz0HV9lChoBkuqaAdLyWgIR0Bbo+54GD+SdX2UKGgGS65oB0vJaAhHQFuq48U21lZ1fZQoaAZLomgHS8loCEdAW7Aajvd/KHV9lChoBkusaAdLyWgIR0Bc+XztkWhzdX2UKGgGS69oB0vJaAhHQFz6sZHd43Z1fZQoaAZLMWgHS6ZoCEdAXPy55JK8MHV9lChoBkrT////aAdLPGgIR0BdBVWjoIOZdX2UKGgGS7ZoB0vJaAhHQF0HAAQxveh1fZQoaAZLG2gHS5xoCEdAXRE29+PRzHV9lChoBkuqaAdLyWgIR0BdFpFTefqYdX2UKGgGSsz///9oB0s6aAhHQF0e482aUiZ1fZQoaAZLRGgHS7xoCEdAXSIL3K0UoXV9lChoBku6aAdLyWgIR0BdImX9itq6dX2UKGgGSu7///9oB0tnaAhHQF0tyWiUPhB1fZQoaAZLq2gHS8loCEdAXS5IatLcsXV9lChoBkunaAdLyWgIR0BdPudwvQF+dX2UKGgGS7VoB0vJaAhHQF0/QhOgxrV1fZQoaAZLqmgHS8loCEdAXUqgmJFb3XV9lChoBkuoaAdLyWgIR0BdSx/RVp9JdX2UKGgGS7BoB0vJaAhHQF1bvdM0xdp1fZQoaAZLs2gHS8loCEdAXVwYtQKrrHV9lChoBks1aAdLo2gIR0BdYoFNcnmadX2UKGgGS1BoB0vGaAhHQF1nKVpsXSB1fZQoaAZKzv///2gHSz1oCEdAXWtcpsoDxXV9lChoBkseaAdLlGgIR0BdcTyjHn2adX2UKGgGSsf///9oB0s0aAhHQF1y8c+7lJZ1fZQoaAZLqmgHS8loCEdAXXk1sLv1DnV9lChoBkupaAdLyWgIR0BdhCzsyBTXdX2UKGgGSxloB0uQaAhHQF2Hq6e5Fw11fZQoaAZKs////2gHSxhoCEdAXYssrd30PHV9lChoBkuoaAdLyWgIR0BdjlX3g1m8dX2UKGgGSxtoB0uVaAhHQF2O2ECeVcF1fZQoaAZK6////2gHS2NoCEdAXZySgXdj5XV9lChoBkuqaAdLyWgIR0BdoUPQOWjXdX2UKGgGS7NoB0vJaAhHQF2oKBun/DN1fZQoaAZLwGgHS8loCEdAXau6z3RG+nV9lChoBksFaAdLd2gIR0BdrdZid8RddX2UKGgGSrj///9oB0sgaAhHQF2web/ffoB1fZQoaAZLs2gHS8loCEdAXb5Ex7AtWnV9lChoBkuuaAdLyWgIR0BdxSXUpd8idX2UKGgGS7ZoB0vJaAhHQF3KtlqagEl1fZQoaAZK6////2gHS2FoCEdAXcxLdvbXYnV9lChoBku0aAdLyWgIR0BdzW/336AOdX2UKGgGSvr///9oB0tpaAhHQF3cbO/tY0V1fZQoaAZLpmgHS8loCEdAXeIbsF+uvHV9lChoBkssaAdLqGgIR0Bd4wO8TSLJdX2UKGgGSyZoB0ulaAhHQF3kLXtjTa11fZQoaAZLtmgHS8loCEdAXflLJ0W/J3V9lChoBks6aAdLvGgIR0Bd/STyJ9ApdX2UKGgGSrv///9oB0shaAhHQF3+LLpzLfV1fZQoaAZLPGgHS7doCEdAXf5+RYA80XV9lChoBkuvaAdLyWgIR0BeABTfixVydX2UKGgGSqz///9oB0sTaAhHQF4AOp84Pwx1fZQoaAZKtv///2gHSyBoCEdAXgTcbiqABnV9lChoBkrM////aAdLMmgIR0BeB3d43WFwdX2UKGgGSsz///9oB0s6aAhHQF4NSflIVdp1fZQoaAZLHGgHS5JoCEdAXhPKJVKf4HV9lChoBkspaAdLpmgIR0BeFoEB8x9HdX2UKGgGSu////9oB0thaAhHQF4bV6eGwid1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.35 # 64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb0fb313f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb0fb31480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb0fb31510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb0fb315a0>", "_build": "<function ActorCriticPolicy._build at 0x7fcb0fb31630>", "forward": "<function ActorCriticPolicy.forward at 0x7fcb0fb316c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb0fb31750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb0fb317e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcb0fb31870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb0fb31900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb0fb31990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb0fb31a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcb0fb2dbc0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[0. 0. 0.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675308159984252897, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP6ozAz8AAIA/AACAPwAAgD8oOBY/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVtwkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKxv///4wBbJRLSYwBdJRHQFqzv8ZUDMh1fZQoaAZLcGgHS8loCEdAWr/MGHHmzXV9lChoBktmaAdLyWgIR0Bawk6YE4ecdX2UKGgGSwZoB0vAaAhHQFrCnLJSzgN1fZQoaAZKpP///2gHSw1oCEdAWsSONo8IRnV9lChoBkrh////aAdLc2gIR0BaxH+yZ8a5dX2UKGgGStH///9oB0tWaAhHQFrO4Z/CqId1fZQoaAZKvP///2gHSzRoCEdAWtZTn7pFC3V9lChoBkrg////aAdLg2gIR0Ba13pbD/EPdX2UKGgGS1xoB0vJaAhHQFrdAIIF/x51fZQoaAZKyv///2gHS0RoCEdAWuA6RyOrAHV9lChoBktlaAdLyWgIR0Ba4X40uUUxdX2UKGgGSrT///9oB0tEaAhHQFrqB4lhPTJ1fZQoaAZK0f///2gHS15oCEdAWu77hvR7Z3V9lChoBkrT////aAdLgWgIR0Ba77mp2ll9dX2UKGgGS2doB0vJaAhHQFr0jIaLn9x1fZQoaAZKz////2gHS21oCEdAWv9OwgTyrnV9lChoBkqh////aAdLFGgIR0BbAj3VTaTPdX2UKGgGS25oB0vJaAhHQFsHBKtga3t1fZQoaAZKp////2gHSyNoCEdAWwwS00FbFHV9lChoBktxaAdLyWgIR0BbDBHskY4ydX2UKGgGS2doB0vJaAhHQFsRio86mwd1fZQoaAZKyP///2gHS0loCEdAWxaVLSNOunV9lChoBktFaAdLyWgIR0BbHztgKF7EdX2UKGgGSr7///9oB0tiaAhHQFsfsV+I/JN1fZQoaAZLVGgHS8loCEdAWykFnqVyFXV9lChoBkrO////aAdLhGgIR0BbMoIKMNtqdX2UKGgGSsj///9oB0tFaAhHQFsy+EytV7x1fZQoaAZLZ2gHS8loCEdAWzOIZZSvT3V9lChoBkql////aAdLGmgIR0BbNnhsImgKdX2UKGgGSqf///9oB0sVaAhHQFs2s2eg+Ql1fZQoaAZLVGgHS8loCEdAWzxgXuVopXV9lChoBkrI////aAdLWGgIR0BbQ1XV9Wp7dX2UKGgGSq3///9oB0shaAhHQFtIJSR8twt1fZQoaAZLd2gHS8loCEdAW1AleF+NLnV9lChoBktoaAdLyWgIR0BbU4287IT5dX2UKGgGSu////9oB0ukaAhHQFtUJUo8ZDR1fZQoaAZK2v///2gHS35oCEdAW1pjnV5KOHV9lChoBkrH////aAdLUWgIR0BbW/8AJb+tdX2UKGgGSrb///9oB0tJaAhHQFtew6hg3Lp1fZQoaAZKvP///2gHS0JoCEdAW2QEs8PnS3V9lChoBkt0aAdLyWgIR0BbcJFgDzRQdX2UKGgGS3poB0vJaAhHQFt4yQPqcEx1fZQoaAZLZmgHS8loCEdAW3uKLsKLKnV9lChoBkrK////aAdLUGgIR0BbfCP2f02+dX2UKGgGS2FoB0vJaAhHQFuA4R28qWl1fZQoaAZKrf///2gHSy5oCEdAW4JVjqfOEHV9lChoBktNaAdLyWgIR0Bc0jy8SPELdX2UKGgGS25oB0vJaAhHQFzVflp48lp1fZQoaAZLZWgHS8loCEdAXNo6Mir1d3V9lChoBktpaAdLyWgIR0Bc26nR9gF5dX2UKGgGS3RoB0vJaAhHQFzu/D+BH091fZQoaAZLbGgHS8loCEdAXPI98qnWKHV9lChoBkqi////aAdLE2gIR0Bc9Qdn003wdX2UKGgGS1ZoB0vJaAhHQFz3E8aGYa51fZQoaAZLamgHS8loCEdAXPiC04R283V9lChoBktjaAdLyWgIR0BdC9jPOY6XdX2UKGgGSuD///9oB0uWaAhHQF0N6kIomXx1fZQoaAZLdGgHS8loCEdAXRHkKeCkGnV9lChoBkr4////aAdLxWgIR0BdE2QXAM2FdX2UKGgGSqP///9oB0sdaAhHQF0XlolD4QB1fZQoaAZK+P///2gHS6JoCEdAXSUvcrRSg3V9lChoBktyaAdLyWgIR0BdKNELH+6zdX2UKGgGS2loB0vJaAhHQF0uwx33Ycx1fZQoaAZKsv///2gHSyxoCEdAXS855qubJHV9lChoBksBaAdLqGgIR0BdL83AEdNndX2UKGgGSqT///9oB0tAaAhHQF04HsC1Z1V1fZQoaAZLXmgHS8loCEdAXUI078vVVnV9lChoBkrJ////aAdLVmgIR0BdRIDxLCemdX2UKGgGS19oB0vJaAhHQF1MJ8fFJg91fZQoaAZLe2gHS8loCEdAXUy3XqZ+hHV9lChoBkt7aAdLyWgIR0BdXvfCQ9zPdX2UKGgGS1xoB0vJaAhHQF1hQUpNKyx1fZQoaAZLcWgHS8loCEdAXWjmRvFWGXV9lChoBkuAaAdLyWgIR0BdaXWjGkvcdX2UKGgGStH///9oB0tlaAhHQF1tl4TsY2t1fZQoaAZK1f///2gHS3NoCEdAXXHeSB9TgnV9lChoBkrD////aAdLU2gIR0BdeYSQHRkVdX2UKGgGS21oB0vJaAhHQF2FxzJZGKB1fZQoaAZLV2gHS8loCEdAXYZXIU8FIXV9lChoBkrf////aAdLp2gIR0Bdidd7fHghdX2UKGgGSqj///9oB0sYaAhHQF2J7tiQT251fZQoaAZLYGgHS8loCEdAXZZfICEHuHV9lChoBkqo////aAdLFWgIR0BdmW+j/MnrdX2UKGgGS2ZoB0vJaAhHQF2iv0h/y5J1fZQoaAZLa2gHS8loCEdAXaa12JSBLHV9lChoBkt2aAdLyWgIR0Bdpsk+otL+dX2UKGgGSqD///9oB0seaAhHQF2nQg9vCMx1fZQoaAZKsP///2gHSyVoCEdAXaw580DU3HV9lChoBktiaAdLyWgIR0BdtmbgCOm0dX2UKGgGSun///9oB0uiaAhHQF3DRRuTA311fZQoaAZLYWgHS8loCEdAXcOgezUqhHV9lChoBktoaAdLyWgIR0BdxBUrCm/GdX2UKGgGSq3///9oB0smaAhHQF3Jjmjj7yh1fZQoaAZKuf///2gHSzloCEdAXcv4EfT1CnV9lChoBksIaAdLsGgIR0Bdz9CmdiDvdX2UKGgGSs7///9oB0tyaAhHQF3Z9rXUYsN1fZQoaAZLb2gHS8loCEdAXeBZA6dUbXV9lChoBktqaAdLyWgIR0Bd6MSsbNr1dX2UKGgGSvf///9oB0u5aAhHQF3qXAuZkTZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.35 # 64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af3c541c60b637582220e0b91adad17480434e94d8ca312c26c1bb81ed7c0be4
|
3 |
+
size 1316908
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 45.6, "std_reward": 108.1260375672761, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T19:24:45.002051"}
|