culteejen commited on
Commit
34d531e
·
1 Parent(s): 66f4faf

Upload model to Hugging Face

Browse files
PPO-default.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fc9981dccacd366a6f8ef967545d44da90e63af444c2d003ff43ff90d374b5f6
3
- size 136611
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e29a8a1b1ad620ac18a6cce00b8dfcde9c2b9a4faae2def44e3520eabde464d6
3
+ size 136711
PPO-default/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94c4c35360>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94c4c353f0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94c4c35480>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94c4c35510>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f94c4c355a0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f94c4c35630>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94c4c356c0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94c4c35750>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f94c4c357e0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94c4c35870>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94c4c35900>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94c4c35990>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f94c4c31540>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
@@ -48,7 +48,7 @@
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1675307914449286626,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8GTIg+AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsDhpSMAUOUdJRSlC4="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -70,7 +70,7 @@
70
  "_current_progress_remaining": -0.0649599999999999,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVbAkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRLt4wBbJRLyYwBdJRHQFqqvbXYlIF1fZQoaAZKrv///2gHSxhoCEdAWq5RUFSsKnV9lChoBkutaAdLyWgIR0BawF+AmReUdX2UKGgGS7FoB0vJaAhHQFrCFb3XZoR1fZQoaAZLpGgHS8loCEdAWseTOgQHzHV9lChoBkukaAdLyWgIR0BayyMtK7I1dX2UKGgGS69oB0vJaAhHQFrdO4G2TgV1fZQoaAZLs2gHS8loCEdAWt7xjJ+2E3V9lChoBkskaAdLoWgIR0Ba4kH6dlNDdX2UKGgGS65oB0vJaAhHQFrkidrftQd1fZQoaAZKrf///2gHSxtoCEdAWuZHLA57xHV9lChoBkrD////aAdLMmgIR0Ba69HMEA5rdX2UKGgGSx5oB0ukaAhHQFr2r8R+SbJ1fZQoaAZLq2gHS8loCEdAWvpqdpZfUnV9lChoBkstaAdLpmgIR0Ba/jpLVWjodX2UKGgGSzNoB0utaAhHQFsEx1gYxcp1fZQoaAZK+P///2gHS21oCEdAWwaTFERao3V9lChoBku5aAdLyWgIR0BbF1Li++M7dX2UKGgGS6RoB0vJaAhHQFsbHKwIMSd1fZQoaAZLt2gHS8loCEdAWyGmLtNSInV9lChoBkrj////aAdLU2gIR0BbI1/c32mIdX2UKGgGS7BoB0vJaAhHQFsjhpxm03R1fZQoaAZLKWgHS61oCEdAWzQMNMGorHV9lChoBkuvaAdLyWgIR0BbPon4O+ZgdX2UKGgGS6xoB0vJaAhHQFtAP4VRDTl1fZQoaAZLrGgHS8loCEdAW0BmSQo1DXV9lChoBkuvaAdLyWgIR0BbUNvbXYlIdX2UKGgGSzxoB0u+aAhHQFtZ0XgtOEd1fZQoaAZLpWgHS8loCEdAW10W69TP0XV9lChoBkuwaAdLyWgIR0BbXT1kDp1SdX2UKGgGSt3///9oB0tJaAhHQFtnsfJV81J1fZQoaAZLsmgHS8loCEdAW23VrhzeXXV9lChoBksPaAdLiGgIR0BbcL9ycTakdX2UKGgGSzBoB0ujaAhHQFtxf0mMOwx1fZQoaAZK+P///2gHS3BoCEdAW34IQe3hGnV9lChoBks+aAdLuWgIR0BbgnWvr4WUdX2UKGgGSrX///9oB0seaAhHQFuG0QbuMMt1fZQoaAZLoGgHS8loCEdAW43JJXhfjXV9lChoBkugaAdLyWgIR0BbjoVRDTjOdX2UKGgGSxJoB0uRaAhHQFuTGMXJo011fZQoaAZLF2gHS4xoCEdAW6K59Vmz0HV9lChoBkuqaAdLyWgIR0Bbo+54GD+SdX2UKGgGS65oB0vJaAhHQFuq48U21lZ1fZQoaAZLomgHS8loCEdAW7Aajvd/KHV9lChoBkusaAdLyWgIR0Bc+XztkWhzdX2UKGgGS69oB0vJaAhHQFz6sZHd43Z1fZQoaAZLMWgHS6ZoCEdAXPy55JK8MHV9lChoBkrT////aAdLPGgIR0BdBVWjoIOZdX2UKGgGS7ZoB0vJaAhHQF0HAAQxveh1fZQoaAZLG2gHS5xoCEdAXRE29+PRzHV9lChoBkuqaAdLyWgIR0BdFpFTefqYdX2UKGgGSsz///9oB0s6aAhHQF0e482aUiZ1fZQoaAZLRGgHS7xoCEdAXSIL3K0UoXV9lChoBku6aAdLyWgIR0BdImX9itq6dX2UKGgGSu7///9oB0tnaAhHQF0tyWiUPhB1fZQoaAZLq2gHS8loCEdAXS5IatLcsXV9lChoBkunaAdLyWgIR0BdPudwvQF+dX2UKGgGS7VoB0vJaAhHQF0/QhOgxrV1fZQoaAZLqmgHS8loCEdAXUqgmJFb3XV9lChoBkuoaAdLyWgIR0BdSx/RVp9JdX2UKGgGS7BoB0vJaAhHQF1bvdM0xdp1fZQoaAZLs2gHS8loCEdAXVwYtQKrrHV9lChoBks1aAdLo2gIR0BdYoFNcnmadX2UKGgGS1BoB0vGaAhHQF1nKVpsXSB1fZQoaAZKzv///2gHSz1oCEdAXWtcpsoDxXV9lChoBkseaAdLlGgIR0BdcTyjHn2adX2UKGgGSsf///9oB0s0aAhHQF1y8c+7lJZ1fZQoaAZLqmgHS8loCEdAXXk1sLv1DnV9lChoBkupaAdLyWgIR0BdhCzsyBTXdX2UKGgGSxloB0uQaAhHQF2Hq6e5Fw11fZQoaAZKs////2gHSxhoCEdAXYssrd30PHV9lChoBkuoaAdLyWgIR0BdjlX3g1m8dX2UKGgGSxtoB0uVaAhHQF2O2ECeVcF1fZQoaAZK6////2gHS2NoCEdAXZySgXdj5XV9lChoBkuqaAdLyWgIR0BdoUPQOWjXdX2UKGgGS7NoB0vJaAhHQF2oKBun/DN1fZQoaAZLwGgHS8loCEdAXau6z3RG+nV9lChoBksFaAdLd2gIR0BdrdZid8RddX2UKGgGSrj///9oB0sgaAhHQF2web/ffoB1fZQoaAZLs2gHS8loCEdAXb5Ex7AtWnV9lChoBkuuaAdLyWgIR0BdxSXUpd8idX2UKGgGS7ZoB0vJaAhHQF3KtlqagEl1fZQoaAZK6////2gHS2FoCEdAXcxLdvbXYnV9lChoBku0aAdLyWgIR0BdzW/336AOdX2UKGgGSvr///9oB0tpaAhHQF3cbO/tY0V1fZQoaAZLpmgHS8loCEdAXeIbsF+uvHV9lChoBkssaAdLqGgIR0Bd4wO8TSLJdX2UKGgGSyZoB0ulaAhHQF3kLXtjTa11fZQoaAZLtmgHS8loCEdAXflLJ0W/J3V9lChoBks6aAdLvGgIR0Bd/STyJ9ApdX2UKGgGSrv///9oB0shaAhHQF3+LLpzLfV1fZQoaAZLPGgHS7doCEdAXf5+RYA80XV9lChoBkuvaAdLyWgIR0BeABTfixVydX2UKGgGSqz///9oB0sTaAhHQF4AOp84Pwx1fZQoaAZKtv///2gHSyBoCEdAXgTcbiqABnV9lChoBkrM////aAdLMmgIR0BeB3d43WFwdX2UKGgGSsz///9oB0s6aAhHQF4NSflIVdp1fZQoaAZLHGgHS5JoCEdAXhPKJVKf4HV9lChoBkspaAdLpmgIR0BeFoEB8x9HdX2UKGgGSu////9oB0thaAhHQF4bV6eGwid1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb0fb313f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb0fb31480>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb0fb31510>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb0fb315a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcb0fb31630>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcb0fb316c0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb0fb31750>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb0fb317e0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcb0fb31870>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb0fb31900>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb0fb31990>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb0fb31a20>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fcb0fb2dbc0>"
21
  },
22
  "verbose": true,
23
  "policy_kwargs": {},
 
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1675308159984252897,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP6ozAz8AAIA/AACAPwAAgD8oOBY/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsDhpSMAUOUdJRSlC4="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
70
  "_current_progress_remaining": -0.0649599999999999,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVtwkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKxv///4wBbJRLSYwBdJRHQFqzv8ZUDMh1fZQoaAZLcGgHS8loCEdAWr/MGHHmzXV9lChoBktmaAdLyWgIR0Bawk6YE4ecdX2UKGgGSwZoB0vAaAhHQFrCnLJSzgN1fZQoaAZKpP///2gHSw1oCEdAWsSONo8IRnV9lChoBkrh////aAdLc2gIR0BaxH+yZ8a5dX2UKGgGStH///9oB0tWaAhHQFrO4Z/CqId1fZQoaAZKvP///2gHSzRoCEdAWtZTn7pFC3V9lChoBkrg////aAdLg2gIR0Ba13pbD/EPdX2UKGgGS1xoB0vJaAhHQFrdAIIF/x51fZQoaAZKyv///2gHS0RoCEdAWuA6RyOrAHV9lChoBktlaAdLyWgIR0Ba4X40uUUxdX2UKGgGSrT///9oB0tEaAhHQFrqB4lhPTJ1fZQoaAZK0f///2gHS15oCEdAWu77hvR7Z3V9lChoBkrT////aAdLgWgIR0Ba77mp2ll9dX2UKGgGS2doB0vJaAhHQFr0jIaLn9x1fZQoaAZKz////2gHS21oCEdAWv9OwgTyrnV9lChoBkqh////aAdLFGgIR0BbAj3VTaTPdX2UKGgGS25oB0vJaAhHQFsHBKtga3t1fZQoaAZKp////2gHSyNoCEdAWwwS00FbFHV9lChoBktxaAdLyWgIR0BbDBHskY4ydX2UKGgGS2doB0vJaAhHQFsRio86mwd1fZQoaAZKyP///2gHS0loCEdAWxaVLSNOunV9lChoBktFaAdLyWgIR0BbHztgKF7EdX2UKGgGSr7///9oB0tiaAhHQFsfsV+I/JN1fZQoaAZLVGgHS8loCEdAWykFnqVyFXV9lChoBkrO////aAdLhGgIR0BbMoIKMNtqdX2UKGgGSsj///9oB0tFaAhHQFsy+EytV7x1fZQoaAZLZ2gHS8loCEdAWzOIZZSvT3V9lChoBkql////aAdLGmgIR0BbNnhsImgKdX2UKGgGSqf///9oB0sVaAhHQFs2s2eg+Ql1fZQoaAZLVGgHS8loCEdAWzxgXuVopXV9lChoBkrI////aAdLWGgIR0BbQ1XV9Wp7dX2UKGgGSq3///9oB0shaAhHQFtIJSR8twt1fZQoaAZLd2gHS8loCEdAW1AleF+NLnV9lChoBktoaAdLyWgIR0BbU4287IT5dX2UKGgGSu////9oB0ukaAhHQFtUJUo8ZDR1fZQoaAZK2v///2gHS35oCEdAW1pjnV5KOHV9lChoBkrH////aAdLUWgIR0BbW/8AJb+tdX2UKGgGSrb///9oB0tJaAhHQFtew6hg3Lp1fZQoaAZKvP///2gHS0JoCEdAW2QEs8PnS3V9lChoBkt0aAdLyWgIR0BbcJFgDzRQdX2UKGgGS3poB0vJaAhHQFt4yQPqcEx1fZQoaAZLZmgHS8loCEdAW3uKLsKLKnV9lChoBkrK////aAdLUGgIR0BbfCP2f02+dX2UKGgGS2FoB0vJaAhHQFuA4R28qWl1fZQoaAZKrf///2gHSy5oCEdAW4JVjqfOEHV9lChoBktNaAdLyWgIR0Bc0jy8SPELdX2UKGgGS25oB0vJaAhHQFzVflp48lp1fZQoaAZLZWgHS8loCEdAXNo6Mir1d3V9lChoBktpaAdLyWgIR0Bc26nR9gF5dX2UKGgGS3RoB0vJaAhHQFzu/D+BH091fZQoaAZLbGgHS8loCEdAXPI98qnWKHV9lChoBkqi////aAdLE2gIR0Bc9Qdn003wdX2UKGgGS1ZoB0vJaAhHQFz3E8aGYa51fZQoaAZLamgHS8loCEdAXPiC04R283V9lChoBktjaAdLyWgIR0BdC9jPOY6XdX2UKGgGSuD///9oB0uWaAhHQF0N6kIomXx1fZQoaAZLdGgHS8loCEdAXRHkKeCkGnV9lChoBkr4////aAdLxWgIR0BdE2QXAM2FdX2UKGgGSqP///9oB0sdaAhHQF0XlolD4QB1fZQoaAZK+P///2gHS6JoCEdAXSUvcrRSg3V9lChoBktyaAdLyWgIR0BdKNELH+6zdX2UKGgGS2loB0vJaAhHQF0uwx33Ycx1fZQoaAZKsv///2gHSyxoCEdAXS855qubJHV9lChoBksBaAdLqGgIR0BdL83AEdNndX2UKGgGSqT///9oB0tAaAhHQF04HsC1Z1V1fZQoaAZLXmgHS8loCEdAXUI078vVVnV9lChoBkrJ////aAdLVmgIR0BdRIDxLCemdX2UKGgGS19oB0vJaAhHQF1MJ8fFJg91fZQoaAZLe2gHS8loCEdAXUy3XqZ+hHV9lChoBkt7aAdLyWgIR0BdXvfCQ9zPdX2UKGgGS1xoB0vJaAhHQF1hQUpNKyx1fZQoaAZLcWgHS8loCEdAXWjmRvFWGXV9lChoBkuAaAdLyWgIR0BdaXWjGkvcdX2UKGgGStH///9oB0tlaAhHQF1tl4TsY2t1fZQoaAZK1f///2gHS3NoCEdAXXHeSB9TgnV9lChoBkrD////aAdLU2gIR0BdeYSQHRkVdX2UKGgGS21oB0vJaAhHQF2FxzJZGKB1fZQoaAZLV2gHS8loCEdAXYZXIU8FIXV9lChoBkrf////aAdLp2gIR0Bdidd7fHghdX2UKGgGSqj///9oB0sYaAhHQF2J7tiQT251fZQoaAZLYGgHS8loCEdAXZZfICEHuHV9lChoBkqo////aAdLFWgIR0BdmW+j/MnrdX2UKGgGS2ZoB0vJaAhHQF2iv0h/y5J1fZQoaAZLa2gHS8loCEdAXaa12JSBLHV9lChoBkt2aAdLyWgIR0Bdpsk+otL+dX2UKGgGSqD///9oB0seaAhHQF2nQg9vCMx1fZQoaAZKsP///2gHSyVoCEdAXaw580DU3HV9lChoBktiaAdLyWgIR0BdtmbgCOm0dX2UKGgGSun///9oB0uiaAhHQF3DRRuTA311fZQoaAZLYWgHS8loCEdAXcOgezUqhHV9lChoBktoaAdLyWgIR0BdxBUrCm/GdX2UKGgGSq3///9oB0smaAhHQF3Jjmjj7yh1fZQoaAZKuf///2gHSzloCEdAXcv4EfT1CnV9lChoBksIaAdLsGgIR0Bdz9CmdiDvdX2UKGgGSs7///9oB0tyaAhHQF3Z9rXUYsN1fZQoaAZLb2gHS8loCEdAXeBZA6dUbXV9lChoBktqaAdLyWgIR0Bd6MSsbNr1dX2UKGgGSvf///9oB0u5aAhHQF3qXAuZkTZ1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
PPO-default/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ed41452c0e4f48bbdd64ac708e8263eb393651ec2ff6ebe27ef76c46ffb272e0
3
  size 82809
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cda92f0a6a671f2d4d79468cec723d3542d7a49705e18c70f98ee681bdf72c1
3
  size 82809
PPO-default/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:df14efaab1908c15c4ad336d2fa13b58c9f7fe38d3d01db7bbf5957d9de66aa1
3
  size 40833
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5938290ce126c85242ee69ad78156ac67f52ecf933c31335d8b25c9b2be7f84f
3
  size 40833
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: Roomba
17
  metrics:
18
  - type: mean_reward
19
- value: 138.30 +/- 101.82
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: Roomba
17
  metrics:
18
  - type: mean_reward
19
+ value: 45.60 +/- 108.13
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f94c4c35360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f94c4c353f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f94c4c35480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f94c4c35510>", "_build": "<function ActorCriticPolicy._build at 0x7f94c4c355a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f94c4c35630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f94c4c356c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f94c4c35750>", "_predict": "<function ActorCriticPolicy._predict at 0x7f94c4c357e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f94c4c35870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f94c4c35900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f94c4c35990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f94c4c31540>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[0. 0. 0.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675307914449286626, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8GTIg+AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbAkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRLt4wBbJRLyYwBdJRHQFqqvbXYlIF1fZQoaAZKrv///2gHSxhoCEdAWq5RUFSsKnV9lChoBkutaAdLyWgIR0BawF+AmReUdX2UKGgGS7FoB0vJaAhHQFrCFb3XZoR1fZQoaAZLpGgHS8loCEdAWseTOgQHzHV9lChoBkukaAdLyWgIR0BayyMtK7I1dX2UKGgGS69oB0vJaAhHQFrdO4G2TgV1fZQoaAZLs2gHS8loCEdAWt7xjJ+2E3V9lChoBkskaAdLoWgIR0Ba4kH6dlNDdX2UKGgGS65oB0vJaAhHQFrkidrftQd1fZQoaAZKrf///2gHSxtoCEdAWuZHLA57xHV9lChoBkrD////aAdLMmgIR0Ba69HMEA5rdX2UKGgGSx5oB0ukaAhHQFr2r8R+SbJ1fZQoaAZLq2gHS8loCEdAWvpqdpZfUnV9lChoBkstaAdLpmgIR0Ba/jpLVWjodX2UKGgGSzNoB0utaAhHQFsEx1gYxcp1fZQoaAZK+P///2gHS21oCEdAWwaTFERao3V9lChoBku5aAdLyWgIR0BbF1Li++M7dX2UKGgGS6RoB0vJaAhHQFsbHKwIMSd1fZQoaAZLt2gHS8loCEdAWyGmLtNSInV9lChoBkrj////aAdLU2gIR0BbI1/c32mIdX2UKGgGS7BoB0vJaAhHQFsjhpxm03R1fZQoaAZLKWgHS61oCEdAWzQMNMGorHV9lChoBkuvaAdLyWgIR0BbPon4O+ZgdX2UKGgGS6xoB0vJaAhHQFtAP4VRDTl1fZQoaAZLrGgHS8loCEdAW0BmSQo1DXV9lChoBkuvaAdLyWgIR0BbUNvbXYlIdX2UKGgGSzxoB0u+aAhHQFtZ0XgtOEd1fZQoaAZLpWgHS8loCEdAW10W69TP0XV9lChoBkuwaAdLyWgIR0BbXT1kDp1SdX2UKGgGSt3///9oB0tJaAhHQFtnsfJV81J1fZQoaAZLsmgHS8loCEdAW23VrhzeXXV9lChoBksPaAdLiGgIR0BbcL9ycTakdX2UKGgGSzBoB0ujaAhHQFtxf0mMOwx1fZQoaAZK+P///2gHS3BoCEdAW34IQe3hGnV9lChoBks+aAdLuWgIR0BbgnWvr4WUdX2UKGgGSrX///9oB0seaAhHQFuG0QbuMMt1fZQoaAZLoGgHS8loCEdAW43JJXhfjXV9lChoBkugaAdLyWgIR0BbjoVRDTjOdX2UKGgGSxJoB0uRaAhHQFuTGMXJo011fZQoaAZLF2gHS4xoCEdAW6K59Vmz0HV9lChoBkuqaAdLyWgIR0Bbo+54GD+SdX2UKGgGS65oB0vJaAhHQFuq48U21lZ1fZQoaAZLomgHS8loCEdAW7Aajvd/KHV9lChoBkusaAdLyWgIR0Bc+XztkWhzdX2UKGgGS69oB0vJaAhHQFz6sZHd43Z1fZQoaAZLMWgHS6ZoCEdAXPy55JK8MHV9lChoBkrT////aAdLPGgIR0BdBVWjoIOZdX2UKGgGS7ZoB0vJaAhHQF0HAAQxveh1fZQoaAZLG2gHS5xoCEdAXRE29+PRzHV9lChoBkuqaAdLyWgIR0BdFpFTefqYdX2UKGgGSsz///9oB0s6aAhHQF0e482aUiZ1fZQoaAZLRGgHS7xoCEdAXSIL3K0UoXV9lChoBku6aAdLyWgIR0BdImX9itq6dX2UKGgGSu7///9oB0tnaAhHQF0tyWiUPhB1fZQoaAZLq2gHS8loCEdAXS5IatLcsXV9lChoBkunaAdLyWgIR0BdPudwvQF+dX2UKGgGS7VoB0vJaAhHQF0/QhOgxrV1fZQoaAZLqmgHS8loCEdAXUqgmJFb3XV9lChoBkuoaAdLyWgIR0BdSx/RVp9JdX2UKGgGS7BoB0vJaAhHQF1bvdM0xdp1fZQoaAZLs2gHS8loCEdAXVwYtQKrrHV9lChoBks1aAdLo2gIR0BdYoFNcnmadX2UKGgGS1BoB0vGaAhHQF1nKVpsXSB1fZQoaAZKzv///2gHSz1oCEdAXWtcpsoDxXV9lChoBkseaAdLlGgIR0BdcTyjHn2adX2UKGgGSsf///9oB0s0aAhHQF1y8c+7lJZ1fZQoaAZLqmgHS8loCEdAXXk1sLv1DnV9lChoBkupaAdLyWgIR0BdhCzsyBTXdX2UKGgGSxloB0uQaAhHQF2Hq6e5Fw11fZQoaAZKs////2gHSxhoCEdAXYssrd30PHV9lChoBkuoaAdLyWgIR0BdjlX3g1m8dX2UKGgGSxtoB0uVaAhHQF2O2ECeVcF1fZQoaAZK6////2gHS2NoCEdAXZySgXdj5XV9lChoBkuqaAdLyWgIR0BdoUPQOWjXdX2UKGgGS7NoB0vJaAhHQF2oKBun/DN1fZQoaAZLwGgHS8loCEdAXau6z3RG+nV9lChoBksFaAdLd2gIR0BdrdZid8RddX2UKGgGSrj///9oB0sgaAhHQF2web/ffoB1fZQoaAZLs2gHS8loCEdAXb5Ex7AtWnV9lChoBkuuaAdLyWgIR0BdxSXUpd8idX2UKGgGS7ZoB0vJaAhHQF3KtlqagEl1fZQoaAZK6////2gHS2FoCEdAXcxLdvbXYnV9lChoBku0aAdLyWgIR0BdzW/336AOdX2UKGgGSvr///9oB0tpaAhHQF3cbO/tY0V1fZQoaAZLpmgHS8loCEdAXeIbsF+uvHV9lChoBkssaAdLqGgIR0Bd4wO8TSLJdX2UKGgGSyZoB0ulaAhHQF3kLXtjTa11fZQoaAZLtmgHS8loCEdAXflLJ0W/J3V9lChoBks6aAdLvGgIR0Bd/STyJ9ApdX2UKGgGSrv///9oB0shaAhHQF3+LLpzLfV1fZQoaAZLPGgHS7doCEdAXf5+RYA80XV9lChoBkuvaAdLyWgIR0BeABTfixVydX2UKGgGSqz///9oB0sTaAhHQF4AOp84Pwx1fZQoaAZKtv///2gHSyBoCEdAXgTcbiqABnV9lChoBkrM////aAdLMmgIR0BeB3d43WFwdX2UKGgGSsz///9oB0s6aAhHQF4NSflIVdp1fZQoaAZLHGgHS5JoCEdAXhPKJVKf4HV9lChoBkspaAdLpmgIR0BeFoEB8x9HdX2UKGgGSu////9oB0thaAhHQF4bV6eGwid1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.35 # 64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb0fb313f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb0fb31480>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb0fb31510>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb0fb315a0>", "_build": "<function ActorCriticPolicy._build at 0x7fcb0fb31630>", "forward": "<function ActorCriticPolicy.forward at 0x7fcb0fb316c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb0fb31750>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb0fb317e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcb0fb31870>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb0fb31900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb0fb31990>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb0fb31a20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcb0fb2dbc0>"}, "verbose": true, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[0. 0. 0.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 4, "num_timesteps": 106496, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675308159984252897, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVpQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYwAAAAAAAAAAAAgD8AAIA/AACAPwAAgD8AAIA/AACAP6ozAz8AAIA/AACAPwAAgD8oOBY/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBEsDhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVtwkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRKxv///4wBbJRLSYwBdJRHQFqzv8ZUDMh1fZQoaAZLcGgHS8loCEdAWr/MGHHmzXV9lChoBktmaAdLyWgIR0Bawk6YE4ecdX2UKGgGSwZoB0vAaAhHQFrCnLJSzgN1fZQoaAZKpP///2gHSw1oCEdAWsSONo8IRnV9lChoBkrh////aAdLc2gIR0BaxH+yZ8a5dX2UKGgGStH///9oB0tWaAhHQFrO4Z/CqId1fZQoaAZKvP///2gHSzRoCEdAWtZTn7pFC3V9lChoBkrg////aAdLg2gIR0Ba13pbD/EPdX2UKGgGS1xoB0vJaAhHQFrdAIIF/x51fZQoaAZKyv///2gHS0RoCEdAWuA6RyOrAHV9lChoBktlaAdLyWgIR0Ba4X40uUUxdX2UKGgGSrT///9oB0tEaAhHQFrqB4lhPTJ1fZQoaAZK0f///2gHS15oCEdAWu77hvR7Z3V9lChoBkrT////aAdLgWgIR0Ba77mp2ll9dX2UKGgGS2doB0vJaAhHQFr0jIaLn9x1fZQoaAZKz////2gHS21oCEdAWv9OwgTyrnV9lChoBkqh////aAdLFGgIR0BbAj3VTaTPdX2UKGgGS25oB0vJaAhHQFsHBKtga3t1fZQoaAZKp////2gHSyNoCEdAWwwS00FbFHV9lChoBktxaAdLyWgIR0BbDBHskY4ydX2UKGgGS2doB0vJaAhHQFsRio86mwd1fZQoaAZKyP///2gHS0loCEdAWxaVLSNOunV9lChoBktFaAdLyWgIR0BbHztgKF7EdX2UKGgGSr7///9oB0tiaAhHQFsfsV+I/JN1fZQoaAZLVGgHS8loCEdAWykFnqVyFXV9lChoBkrO////aAdLhGgIR0BbMoIKMNtqdX2UKGgGSsj///9oB0tFaAhHQFsy+EytV7x1fZQoaAZLZ2gHS8loCEdAWzOIZZSvT3V9lChoBkql////aAdLGmgIR0BbNnhsImgKdX2UKGgGSqf///9oB0sVaAhHQFs2s2eg+Ql1fZQoaAZLVGgHS8loCEdAWzxgXuVopXV9lChoBkrI////aAdLWGgIR0BbQ1XV9Wp7dX2UKGgGSq3///9oB0shaAhHQFtIJSR8twt1fZQoaAZLd2gHS8loCEdAW1AleF+NLnV9lChoBktoaAdLyWgIR0BbU4287IT5dX2UKGgGSu////9oB0ukaAhHQFtUJUo8ZDR1fZQoaAZK2v///2gHS35oCEdAW1pjnV5KOHV9lChoBkrH////aAdLUWgIR0BbW/8AJb+tdX2UKGgGSrb///9oB0tJaAhHQFtew6hg3Lp1fZQoaAZKvP///2gHS0JoCEdAW2QEs8PnS3V9lChoBkt0aAdLyWgIR0BbcJFgDzRQdX2UKGgGS3poB0vJaAhHQFt4yQPqcEx1fZQoaAZLZmgHS8loCEdAW3uKLsKLKnV9lChoBkrK////aAdLUGgIR0BbfCP2f02+dX2UKGgGS2FoB0vJaAhHQFuA4R28qWl1fZQoaAZKrf///2gHSy5oCEdAW4JVjqfOEHV9lChoBktNaAdLyWgIR0Bc0jy8SPELdX2UKGgGS25oB0vJaAhHQFzVflp48lp1fZQoaAZLZWgHS8loCEdAXNo6Mir1d3V9lChoBktpaAdLyWgIR0Bc26nR9gF5dX2UKGgGS3RoB0vJaAhHQFzu/D+BH091fZQoaAZLbGgHS8loCEdAXPI98qnWKHV9lChoBkqi////aAdLE2gIR0Bc9Qdn003wdX2UKGgGS1ZoB0vJaAhHQFz3E8aGYa51fZQoaAZLamgHS8loCEdAXPiC04R283V9lChoBktjaAdLyWgIR0BdC9jPOY6XdX2UKGgGSuD///9oB0uWaAhHQF0N6kIomXx1fZQoaAZLdGgHS8loCEdAXRHkKeCkGnV9lChoBkr4////aAdLxWgIR0BdE2QXAM2FdX2UKGgGSqP///9oB0sdaAhHQF0XlolD4QB1fZQoaAZK+P///2gHS6JoCEdAXSUvcrRSg3V9lChoBktyaAdLyWgIR0BdKNELH+6zdX2UKGgGS2loB0vJaAhHQF0uwx33Ycx1fZQoaAZKsv///2gHSyxoCEdAXS855qubJHV9lChoBksBaAdLqGgIR0BdL83AEdNndX2UKGgGSqT///9oB0tAaAhHQF04HsC1Z1V1fZQoaAZLXmgHS8loCEdAXUI078vVVnV9lChoBkrJ////aAdLVmgIR0BdRIDxLCemdX2UKGgGS19oB0vJaAhHQF1MJ8fFJg91fZQoaAZLe2gHS8loCEdAXUy3XqZ+hHV9lChoBkt7aAdLyWgIR0BdXvfCQ9zPdX2UKGgGS1xoB0vJaAhHQF1hQUpNKyx1fZQoaAZLcWgHS8loCEdAXWjmRvFWGXV9lChoBkuAaAdLyWgIR0BdaXWjGkvcdX2UKGgGStH///9oB0tlaAhHQF1tl4TsY2t1fZQoaAZK1f///2gHS3NoCEdAXXHeSB9TgnV9lChoBkrD////aAdLU2gIR0BdeYSQHRkVdX2UKGgGS21oB0vJaAhHQF2FxzJZGKB1fZQoaAZLV2gHS8loCEdAXYZXIU8FIXV9lChoBkrf////aAdLp2gIR0Bdidd7fHghdX2UKGgGSqj///9oB0sYaAhHQF2J7tiQT251fZQoaAZLYGgHS8loCEdAXZZfICEHuHV9lChoBkqo////aAdLFWgIR0BdmW+j/MnrdX2UKGgGS2ZoB0vJaAhHQF2iv0h/y5J1fZQoaAZLa2gHS8loCEdAXaa12JSBLHV9lChoBkt2aAdLyWgIR0Bdpsk+otL+dX2UKGgGSqD///9oB0seaAhHQF2nQg9vCMx1fZQoaAZKsP///2gHSyVoCEdAXaw580DU3HV9lChoBktiaAdLyWgIR0BdtmbgCOm0dX2UKGgGSun///9oB0uiaAhHQF3DRRuTA311fZQoaAZLYWgHS8loCEdAXcOgezUqhHV9lChoBktoaAdLyWgIR0BdxBUrCm/GdX2UKGgGSq3///9oB0smaAhHQF3Jjmjj7yh1fZQoaAZKuf///2gHSzloCEdAXcv4EfT1CnV9lChoBksIaAdLsGgIR0Bdz9CmdiDvdX2UKGgGSs7///9oB0tyaAhHQF3Z9rXUYsN1fZQoaAZLb2gHS8loCEdAXeBZA6dUbXV9lChoBktqaAdLyWgIR0Bd6MSsbNr1dX2UKGgGSvf///9oB0u5aAhHQF3qXAuZkTZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV4QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVy9ob21lL25vaXNlYnJpZGdlLy5sb2NhbC9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.15.0-58-generic-x86_64-with-glibc2.35 # 64-Ubuntu SMP Thu Jan 5 11:43:13 UTC 2023", "Python": "3.10.9", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c14e8fe107546b55697c744abf5cabde512df998530779132217e943f1a33d0
3
- size 1324294
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af3c541c60b637582220e0b91adad17480434e94d8ca312c26c1bb81ed7c0be4
3
+ size 1316908
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 138.3, "std_reward": 101.81949715059488, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T19:20:40.782188"}
 
1
+ {"mean_reward": 45.6, "std_reward": 108.1260375672761, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-01T19:24:45.002051"}