File size: 1,526 Bytes
97358e6 d26e792 97358e6 a9b68be df45f8f 97358e6 d26e792 97358e6 df45f8f 97358e6 d26e792 97358e6 d26e792 97358e6 f609826 97358e6 df45f8f 97358e6 68b954c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
library_name: peft
base_model: meta-llama/Llama-2-7b-chat-hf
---
### Model Description
- NSMC λ°μ΄ν°μ λν΄ meta-llama/Llama-2-7b-chat-hf λ―ΈμΈνλ
- μν 리뷰 ν
μ€νΈλ₯Ό ν둬ννΈμ ν¬ν¨νμ¬ λͺ¨λΈμ μ
λ ₯νλ©΄ 'κΈμ ' λλ 'λΆμ 'μ΄λΌκ³ μμΈ‘ ν
μ€νΈλ₯Ό μ§μ μμ±
- NSMCμ train μ€νλ¦Ώ μμ 2,000κ° μ΄μμ μνμ νμ΅μ μ¬μ©
- test μ€νλ¦Ώ μμ 1,000κ°μ μνλ§ μΈ‘μ
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08,
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_args.logging_steps: 100
- training_args.max_steps : 1600
- trainable params: 19,988,480 || all params: 6,758,404,096 || trainable%: 0.2957573965106688
### Training Results
TrainOutput(global_step=1600, training_loss=0.7892872190475464,
metrics={'train_runtime': 5825.2445, 'train_samples_per_second': 0.549,
'train_steps_per_second': 0.275, 'total_flos': 6.51493254365184e+16,
'train_loss': 0.7892872190475464, 'epoch': 1.6})
### Accuracy
Llama2: μ νλ 0.52
| | TP | TN |
|---|---|---|
| PP | 192 | 168 |
| PN | 317 | 324 |
μ νλλ₯Ό ν₯μμν€κΈ° μν΄ μ¬λ¬ μ°¨λ‘ λ
Έλ ₯μ ν΄λ³΄μμ§λ§ λ°λ³΅ν΄μ μ€λ₯κ° λ°μνμμ΅λλ€.
### Model Card Authors
cxoijve |