File size: 16,243 Bytes
0a948c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import typing as tp
import torch
from einops import rearrange
from torch import nn
from torch.nn import functional as F
from x_transformers import ContinuousTransformerWrapper, Encoder
from .blocks import FourierFeatures
from .transformer import ContinuousTransformer
from .transformer_use_mask import ContinuousTransformer as ContinuousTransformer_mask
class DiffusionTransformer(nn.Module):
def __init__(self,
io_channels=32,
patch_size=1,
embed_dim=768,
cond_token_dim=0,
project_cond_tokens=True,
global_cond_dim=0,
project_global_cond=True,
input_concat_dim=0,
prepend_cond_dim=0,
depth=12,
num_heads=8,
transformer_type: tp.Literal["x-transformers", "continuous_transformer"] = "x-transformers",
global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
**kwargs):
super().__init__()
self.cond_token_dim = cond_token_dim
# Timestep embeddings
timestep_features_dim = 256
self.timestep_features = FourierFeatures(1, timestep_features_dim)
self.to_timestep_embed = nn.Sequential(
nn.Linear(timestep_features_dim, embed_dim, bias=True),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim, bias=True),
)
if cond_token_dim > 0:
# Conditioning tokens
cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
self.to_cond_embed = nn.Sequential(
nn.Linear(cond_token_dim, cond_embed_dim, bias=False),
nn.SiLU(),
nn.Linear(cond_embed_dim, cond_embed_dim, bias=False)
)
else:
cond_embed_dim = 0
self.to_cond_embed = nn.Identity()
if global_cond_dim > 0:
# Global conditioning
global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
self.to_global_embed = nn.Sequential(
nn.Linear(global_cond_dim, global_embed_dim, bias=False),
nn.SiLU(),
nn.Linear(global_embed_dim, global_embed_dim, bias=False)
)
if prepend_cond_dim > 0:
# Prepend conditioning
self.to_prepend_embed = nn.Sequential(
nn.Linear(prepend_cond_dim, embed_dim, bias=False),
nn.SiLU(),
nn.Linear(embed_dim, embed_dim, bias=False)
)
self.input_concat_dim = input_concat_dim
dim_in = io_channels + self.input_concat_dim
self.patch_size = patch_size
# Transformer
self.transformer_type = transformer_type
self.global_cond_type = global_cond_type
if self.transformer_type == "x-transformers":
self.transformer = ContinuousTransformerWrapper(
dim_in=dim_in * patch_size,
dim_out=io_channels * patch_size,
max_seq_len=0, # Not relevant without absolute positional embeds
attn_layers=Encoder(
dim=embed_dim,
depth=depth,
heads=num_heads,
attn_flash=True,
cross_attend=cond_token_dim > 0,
dim_context=None if cond_embed_dim == 0 else cond_embed_dim,
zero_init_branch_output=True,
use_abs_pos_emb=False,
rotary_pos_emb=True,
ff_swish=True,
ff_glu=True,
**kwargs
)
)
elif self.transformer_type == "continuous_transformer":
global_dim = None
if self.global_cond_type == "adaLN":
# The global conditioning is projected to the embed_dim already at this point
global_dim = embed_dim
self.transformer = ContinuousTransformer(
dim=embed_dim,
depth=depth,
dim_heads=embed_dim // num_heads,
dim_in=dim_in * patch_size,
dim_out=io_channels * patch_size,
cross_attend=cond_token_dim > 0,
cond_token_dim=cond_embed_dim,
global_cond_dim=global_dim,
**kwargs
)
elif self.transformer_type == "continuous_transformer_with_mask":
global_dim = None
if self.global_cond_type == "adaLN":
# The global conditioning is projected to the embed_dim already at this point
global_dim = embed_dim
self.transformer = ContinuousTransformer_mask(
dim=embed_dim,
depth=depth,
dim_heads=embed_dim // num_heads,
dim_in=dim_in * patch_size,
dim_out=io_channels * patch_size,
cross_attend=cond_token_dim > 0,
cond_token_dim=cond_embed_dim,
global_cond_dim=global_dim,
**kwargs
)
else:
raise ValueError(f"Unknown transformer type: {self.transformer_type}")
self.preprocess_conv = nn.Conv1d(dim_in, dim_in, 1, bias=False)
nn.init.zeros_(self.preprocess_conv.weight)
self.postprocess_conv = nn.Conv1d(io_channels, io_channels, 1, bias=False)
nn.init.zeros_(self.postprocess_conv.weight)
def _forward(
self,
x,
t,
mask=None,
cross_attn_cond=None,
cross_attn_cond_mask=None,
input_concat_cond=None,
global_embed=None,
prepend_cond=None,
prepend_cond_mask=None,
return_info=False,
**kwargs):
### 1. 需要重新写过以适应不同长度的con
if cross_attn_cond is not None:
cross_attn_cond = self.to_cond_embed(cross_attn_cond)
if global_embed is not None:
# Project the global conditioning to the embedding dimension
global_embed = self.to_global_embed(global_embed)
prepend_inputs = None
prepend_mask = None
prepend_length = 0
if prepend_cond is not None:
# Project the prepend conditioning to the embedding dimension
prepend_cond = self.to_prepend_embed(prepend_cond)
prepend_inputs = prepend_cond
if prepend_cond_mask is not None:
prepend_mask = prepend_cond_mask
if input_concat_cond is not None:
# Interpolate input_concat_cond to the same length as x
if input_concat_cond.shape[2] != x.shape[2]:
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2],), mode='nearest')
x = torch.cat([x, input_concat_cond], dim=1)
# Get the batch of timestep embeddings
try:
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None])) # (b, embed_dim)
except Exception as e:
print("t.shape:", t.shape, "x.shape", x.shape)
print("t:", t)
raise e
# Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
if global_embed is not None:
global_embed = global_embed + timestep_embed
else:
global_embed = timestep_embed
# Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
if self.global_cond_type == "prepend":
if prepend_inputs is None:
# Prepend inputs are just the global embed, and the mask is all ones
prepend_inputs = global_embed.unsqueeze(1)
prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
else:
# Prepend inputs are the prepend conditioning + the global embed
prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)],
dim=1)
prepend_length = prepend_inputs.shape[1]
x = self.preprocess_conv(x) + x
x = rearrange(x, "b c t -> b t c")
extra_args = {}
if self.global_cond_type == "adaLN":
extra_args["global_cond"] = global_embed
if self.patch_size > 1:
x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)
if self.transformer_type == "x-transformers":
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond,
context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask,
**extra_args, **kwargs)
elif self.transformer_type in ["continuous_transformer","continuous_transformer_with_mask"] :
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond,
context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask,
return_info=return_info, **extra_args, **kwargs)
if return_info:
output, info = output
elif self.transformer_type == "mm_transformer":
output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask,
**extra_args, **kwargs)
output = rearrange(output, "b t c -> b c t")[:, :, prepend_length:]
if self.patch_size > 1:
output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)
output = self.postprocess_conv(output) + output
if return_info:
return output, info
return output
def forward(
self,
x,
t,
cross_attn_cond=None,
cross_attn_cond_mask=None,
negative_cross_attn_cond=None,
negative_cross_attn_mask=None,
input_concat_cond=None,
global_embed=None,
negative_global_embed=None,
prepend_cond=None,
prepend_cond_mask=None,
cfg_scale=1.0,
cfg_dropout_prob=0.0,
causal=False,
scale_phi=0.0,
mask=None,
return_info=False,
**kwargs):
assert causal == False, "Causal mode is not supported for DiffusionTransformer"
if cross_attn_cond_mask is not None:
cross_attn_cond_mask = cross_attn_cond_mask.bool()
cross_attn_cond_mask = None # Temporarily disabling conditioning masks due to kernel issue for flash attention
if prepend_cond_mask is not None:
prepend_cond_mask = prepend_cond_mask.bool()
# CFG dropout
if cfg_dropout_prob > 0.0:
if cross_attn_cond is not None:
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
dropout_mask = torch.bernoulli(
torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to(
torch.bool)
cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond)
if prepend_cond is not None:
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
dropout_mask = torch.bernoulli(
torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to(
torch.bool)
prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond)
if cfg_scale != 1.0 and (cross_attn_cond is not None or prepend_cond is not None):
# Classifier-free guidance
# Concatenate conditioned and unconditioned inputs on the batch dimension
batch_inputs = torch.cat([x, x], dim=0)
batch_timestep = torch.cat([t, t], dim=0)
if global_embed is not None:
batch_global_cond = torch.cat([global_embed, global_embed], dim=0)
else:
batch_global_cond = None
if input_concat_cond is not None:
batch_input_concat_cond = torch.cat([input_concat_cond, input_concat_cond], dim=0)
else:
batch_input_concat_cond = None
batch_cond = None
batch_cond_masks = None
# Handle CFG for cross-attention conditioning
if cross_attn_cond is not None:
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
# For negative cross-attention conditioning, replace the null embed with the negative cross-attention conditioning
if negative_cross_attn_cond is not None:
# If there's a negative cross-attention mask, set the masked tokens to the null embed
if negative_cross_attn_mask is not None:
negative_cross_attn_mask = negative_cross_attn_mask.to(torch.bool).unsqueeze(2)
negative_cross_attn_cond = torch.where(negative_cross_attn_mask, negative_cross_attn_cond,
null_embed)
batch_cond = torch.cat([cross_attn_cond, negative_cross_attn_cond], dim=0)
else:
batch_cond = torch.cat([cross_attn_cond, null_embed], dim=0)
if cross_attn_cond_mask is not None:
batch_cond_masks = torch.cat([cross_attn_cond_mask, cross_attn_cond_mask], dim=0)
batch_prepend_cond = None
batch_prepend_cond_mask = None
if prepend_cond is not None:
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
batch_prepend_cond = torch.cat([prepend_cond, null_embed], dim=0)
if prepend_cond_mask is not None:
batch_prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0)
if mask is not None:
batch_masks = torch.cat([mask, mask], dim=0)
else:
batch_masks = None
batch_output = self._forward(
batch_inputs,
batch_timestep,
cross_attn_cond=batch_cond,
cross_attn_cond_mask=batch_cond_masks,
mask=batch_masks,
input_concat_cond=batch_input_concat_cond,
global_embed=batch_global_cond,
prepend_cond=batch_prepend_cond,
prepend_cond_mask=batch_prepend_cond_mask,
return_info=return_info,
**kwargs)
if return_info:
batch_output, info = batch_output
cond_output, uncond_output = torch.chunk(batch_output, 2, dim=0)
cfg_output = uncond_output + (cond_output - uncond_output) * cfg_scale
# CFG Rescale
if scale_phi != 0.0:
cond_out_std = cond_output.std(dim=1, keepdim=True)
out_cfg_std = cfg_output.std(dim=1, keepdim=True)
output = scale_phi * (cfg_output * (cond_out_std / out_cfg_std)) + (1 - scale_phi) * cfg_output
else:
output = cfg_output
if return_info:
return output, info
return output
else:
return self._forward(
x,
t,
cross_attn_cond=cross_attn_cond,
cross_attn_cond_mask=cross_attn_cond_mask,
input_concat_cond=input_concat_cond,
global_embed=global_embed,
prepend_cond=prepend_cond,
prepend_cond_mask=prepend_cond_mask,
mask=mask,
return_info=return_info,
**kwargs
)
|