File size: 15,010 Bytes
0a948c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""HIFI-GAN"""
import typing as tp
import numpy as np
from scipy.signal import get_window
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv1d
from torch.nn import ConvTranspose1d
from torch.nn.utils import remove_weight_norm
from torch.nn.utils import weight_norm
from torch.distributions.uniform import Uniform
from cosyvoice.transformer.activation import Snake
from cosyvoice.utils.common import get_padding
from cosyvoice.utils.common import init_weights
"""hifigan based generator implementation.
This code is modified from https://github.com/jik876/hifi-gan
,https://github.com/kan-bayashi/ParallelWaveGAN and
https://github.com/NVIDIA/BigVGAN
"""
class ResBlock(torch.nn.Module):
"""Residual block module in HiFiGAN/BigVGAN."""
def __init__(
self,
channels: int = 512,
kernel_size: int = 3,
dilations: tp.List[int] = [1, 3, 5],
):
super(ResBlock, self).__init__()
self.convs1 = nn.ModuleList()
self.convs2 = nn.ModuleList()
for dilation in dilations:
self.convs1.append(
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation,
padding=get_padding(kernel_size, dilation)
)
)
)
self.convs2.append(
weight_norm(
Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1)
)
)
)
self.convs1.apply(init_weights)
self.convs2.apply(init_weights)
self.activations1 = nn.ModuleList([
Snake(channels, alpha_logscale=False)
for _ in range(len(self.convs1))
])
self.activations2 = nn.ModuleList([
Snake(channels, alpha_logscale=False)
for _ in range(len(self.convs2))
])
def forward(self, x: torch.Tensor) -> torch.Tensor:
for idx in range(len(self.convs1)):
xt = self.activations1[idx](x)
xt = self.convs1[idx](xt)
xt = self.activations2[idx](xt)
xt = self.convs2[idx](xt)
x = xt + x
return x
def remove_weight_norm(self):
for idx in range(len(self.convs1)):
remove_weight_norm(self.convs1[idx])
remove_weight_norm(self.convs2[idx])
class SineGen(torch.nn.Module):
""" Definition of sine generator
SineGen(samp_rate, harmonic_num = 0,
sine_amp = 0.1, noise_std = 0.003,
voiced_threshold = 0,
flag_for_pulse=False)
samp_rate: sampling rate in Hz
harmonic_num: number of harmonic overtones (default 0)
sine_amp: amplitude of sine-wavefrom (default 0.1)
noise_std: std of Gaussian noise (default 0.003)
voiced_thoreshold: F0 threshold for U/V classification (default 0)
flag_for_pulse: this SinGen is used inside PulseGen (default False)
Note: when flag_for_pulse is True, the first time step of a voiced
segment is always sin(np.pi) or cos(0)
"""
def __init__(self, samp_rate, harmonic_num=0,
sine_amp=0.1, noise_std=0.003,
voiced_threshold=0):
super(SineGen, self).__init__()
self.sine_amp = sine_amp
self.noise_std = noise_std
self.harmonic_num = harmonic_num
self.sampling_rate = samp_rate
self.voiced_threshold = voiced_threshold
def _f02uv(self, f0):
# generate uv signal
uv = (f0 > self.voiced_threshold).type(torch.float32)
return uv
@torch.no_grad()
def forward(self, f0):
"""
:param f0: [B, 1, sample_len], Hz
:return: [B, 1, sample_len]
"""
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device)
for i in range(self.harmonic_num + 1):
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1)
u_dist = Uniform(low=-np.pi, high=np.pi)
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device)
phase_vec[:, 0, :] = 0
# generate sine waveforms
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec)
# generate uv signal
uv = self._f02uv(f0)
# noise: for unvoiced should be similar to sine_amp
# std = self.sine_amp/3 -> max value ~ self.sine_amp
# . for voiced regions is self.noise_std
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
noise = noise_amp * torch.randn_like(sine_waves)
# first: set the unvoiced part to 0 by uv
# then: additive noise
sine_waves = sine_waves * uv + noise
return sine_waves, uv, noise
class SourceModuleHnNSF(torch.nn.Module):
""" SourceModule for hn-nsf
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0)
sampling_rate: sampling_rate in Hz
harmonic_num: number of harmonic above F0 (default: 0)
sine_amp: amplitude of sine source signal (default: 0.1)
add_noise_std: std of additive Gaussian noise (default: 0.003)
note that amplitude of noise in unvoiced is decided
by sine_amp
voiced_threshold: threhold to set U/V given F0 (default: 0)
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
uv (batchsize, length, 1)
"""
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
add_noise_std=0.003, voiced_threshod=0):
super(SourceModuleHnNSF, self).__init__()
self.sine_amp = sine_amp
self.noise_std = add_noise_std
# to produce sine waveforms
self.l_sin_gen = SineGen(sampling_rate, harmonic_num,
sine_amp, add_noise_std, voiced_threshod)
# to merge source harmonics into a single excitation
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
self.l_tanh = torch.nn.Tanh()
def forward(self, x):
"""
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
F0_sampled (batchsize, length, 1)
Sine_source (batchsize, length, 1)
noise_source (batchsize, length 1)
"""
# source for harmonic branch
with torch.no_grad():
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2))
sine_wavs = sine_wavs.transpose(1, 2)
uv = uv.transpose(1, 2)
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
# source for noise branch, in the same shape as uv
noise = torch.randn_like(uv) * self.sine_amp / 3
return sine_merge, noise, uv
class HiFTGenerator(nn.Module):
"""
HiFTNet Generator: Neural Source Filter + ISTFTNet
https://arxiv.org/abs/2309.09493
"""
def __init__(
self,
in_channels: int = 80,
base_channels: int = 512,
nb_harmonics: int = 8,
sampling_rate: int = 22050,
nsf_alpha: float = 0.1,
nsf_sigma: float = 0.003,
nsf_voiced_threshold: float = 10,
upsample_rates: tp.List[int] = [8, 8],
upsample_kernel_sizes: tp.List[int] = [16, 16],
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4},
resblock_kernel_sizes: tp.List[int] = [3, 7, 11],
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
source_resblock_kernel_sizes: tp.List[int] = [7, 11],
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]],
lrelu_slope: float = 0.1,
audio_limit: float = 0.99,
f0_predictor: torch.nn.Module = None,
):
super(HiFTGenerator, self).__init__()
self.out_channels = 1
self.nb_harmonics = nb_harmonics
self.sampling_rate = sampling_rate
self.istft_params = istft_params
self.lrelu_slope = lrelu_slope
self.audio_limit = audio_limit
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
self.m_source = SourceModuleHnNSF(
sampling_rate=sampling_rate,
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"],
harmonic_num=nb_harmonics,
sine_amp=nsf_alpha,
add_noise_std=nsf_sigma,
voiced_threshod=nsf_voiced_threshold)
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"])
self.conv_pre = weight_norm(
Conv1d(in_channels, base_channels, 7, 1, padding=3)
)
# Up
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
weight_norm(
ConvTranspose1d(
base_channels // (2**i),
base_channels // (2**(i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
# Down
self.source_downs = nn.ModuleList()
self.source_resblocks = nn.ModuleList()
downsample_rates = [1] + upsample_rates[::-1][:-1]
downsample_cum_rates = np.cumprod(downsample_rates)
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)):
if u == 1:
self.source_downs.append(
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1)
)
else:
self.source_downs.append(
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2))
)
self.source_resblocks.append(
ResBlock(base_channels // (2 ** (i + 1)), k, d)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = base_channels // (2**(i + 1))
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(ResBlock(ch, k, d))
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3))
self.ups.apply(init_weights)
self.conv_post.apply(init_weights)
self.reflection_pad = nn.ReflectionPad1d((1, 0))
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32))
self.f0_predictor = f0_predictor
def _f02source(self, f0: torch.Tensor) -> torch.Tensor:
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
har_source, _, _ = self.m_source(f0)
return har_source.transpose(1, 2)
def _stft(self, x):
spec = torch.stft(
x,
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device),
return_complex=True)
spec = torch.view_as_real(spec) # [B, F, TT, 2]
return spec[..., 0], spec[..., 1]
def _istft(self, magnitude, phase):
magnitude = torch.clip(magnitude, max=1e2)
real = magnitude * torch.cos(phase)
img = magnitude * torch.sin(phase)
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"],
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device))
return inverse_transform
def forward(self, x: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
f0 = self.f0_predictor(x)
s = self._f02source(f0)
# use cache_source to avoid glitch
if cache_source.shape[2] != 0:
s[:, :, :cache_source.shape[2]] = cache_source
s_stft_real, s_stft_imag = self._stft(s.squeeze(1))
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, self.lrelu_slope)
x = self.ups[i](x)
if i == self.num_upsamples - 1:
x = self.reflection_pad(x)
# fusion
si = self.source_downs[i](s_stft)
si = self.source_resblocks[i](si)
x = x + si
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :])
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy
x = self._istft(magnitude, phase)
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
return x, s
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.ups:
remove_weight_norm(l)
for l in self.resblocks:
l.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
self.source_module.remove_weight_norm()
for l in self.source_downs:
remove_weight_norm(l)
for l in self.source_resblocks:
l.remove_weight_norm()
@torch.inference_mode()
def inference(self, mel: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor:
return self.forward(x=mel, cache_source=cache_source) |