|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
import json |
|
import math |
|
from functools import partial |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from torch.utils.data import IterableDataset |
|
from cosyvoice.utils.file_utils import read_lists, read_json_lists |
|
|
|
|
|
class Processor(IterableDataset): |
|
|
|
def __init__(self, source, f, *args, **kw): |
|
assert callable(f) |
|
self.source = source |
|
self.f = f |
|
self.args = args |
|
self.kw = kw |
|
|
|
def set_epoch(self, epoch): |
|
self.source.set_epoch(epoch) |
|
|
|
def __iter__(self): |
|
""" Return an iterator over the source dataset processed by the |
|
given processor. |
|
""" |
|
assert self.source is not None |
|
assert callable(self.f) |
|
return self.f(iter(self.source), *self.args, **self.kw) |
|
|
|
def apply(self, f): |
|
assert callable(f) |
|
return Processor(self, f, *self.args, **self.kw) |
|
|
|
|
|
class DistributedSampler: |
|
|
|
def __init__(self, shuffle=True, partition=True): |
|
self.epoch = -1 |
|
self.update() |
|
self.shuffle = shuffle |
|
self.partition = partition |
|
|
|
def update(self): |
|
assert dist.is_available() |
|
if dist.is_initialized(): |
|
self.rank = dist.get_rank() |
|
self.world_size = dist.get_world_size() |
|
else: |
|
self.rank = 0 |
|
self.world_size = 1 |
|
worker_info = torch.utils.data.get_worker_info() |
|
if worker_info is None: |
|
self.worker_id = 0 |
|
self.num_workers = 1 |
|
else: |
|
self.worker_id = worker_info.id |
|
self.num_workers = worker_info.num_workers |
|
return dict(rank=self.rank, |
|
world_size=self.world_size, |
|
worker_id=self.worker_id, |
|
num_workers=self.num_workers) |
|
|
|
def set_epoch(self, epoch): |
|
self.epoch = epoch |
|
|
|
def sample(self, data): |
|
""" Sample data according to rank/world_size/num_workers |
|
|
|
Args: |
|
data(List): input data list |
|
|
|
Returns: |
|
List: data list after sample |
|
""" |
|
data = list(range(len(data))) |
|
|
|
if self.partition: |
|
if self.shuffle: |
|
random.Random(self.epoch).shuffle(data) |
|
if len(data) < self.world_size: |
|
data = data * math.ceil(self.world_size / len(data)) |
|
data = data[:self.world_size] |
|
data = data[self.rank::self.world_size] |
|
if len(data) < self.num_workers: |
|
data = data * math.ceil(self.num_workers / len(data)) |
|
data = data[:self.num_workers] |
|
data = data[self.worker_id::self.num_workers] |
|
return data |
|
|
|
|
|
class DataList(IterableDataset): |
|
|
|
def __init__(self, lists, shuffle=True, partition=True): |
|
self.lists = lists |
|
self.sampler = DistributedSampler(shuffle, partition) |
|
|
|
def set_epoch(self, epoch): |
|
self.sampler.set_epoch(epoch) |
|
|
|
def __iter__(self): |
|
sampler_info = self.sampler.update() |
|
indexes = self.sampler.sample(self.lists) |
|
for index in indexes: |
|
data = dict(src=self.lists[index]) |
|
data.update(sampler_info) |
|
yield data |
|
|
|
|
|
def Dataset(data_list_file, |
|
data_pipeline, |
|
mode='train', |
|
shuffle=True, |
|
partition=True, |
|
tts_file='', |
|
prompt_utt2data=''): |
|
""" Construct dataset from arguments |
|
|
|
We have two shuffle stage in the Dataset. The first is global |
|
shuffle at shards tar/raw file level. The second is global shuffle |
|
at training samples level. |
|
|
|
Args: |
|
data_type(str): raw/shard |
|
tokenizer (BaseTokenizer): tokenizer to tokenize |
|
partition(bool): whether to do data partition in terms of rank |
|
""" |
|
assert mode in ['train', 'inference'] |
|
lists = read_lists(data_list_file) |
|
|
|
|
|
if mode == 'inference': |
|
with open(tts_file) as f: |
|
tts_data = json.load(f) |
|
utt2lists = read_json_lists(prompt_utt2data) |
|
|
|
lists = list(set([utt2lists[utt] for utt in tts_data.keys() if utt2lists[utt] in lists])) |
|
dataset = DataList(lists,shuffle=shuffle,partition=partition) |
|
if mode == 'inference': |
|
|
|
data_pipeline[0] = partial(data_pipeline[0], tts_data=tts_data) |
|
for func in data_pipeline: |
|
dataset = Processor(dataset, func, mode=mode) |
|
return dataset |
|
|