cydxg's picture
Upload 73 files
0a948c1 verified
raw
history blame
9.45 kB
import torch
import math
from tqdm import trange, tqdm
import k_diffusion as K
# Define the noise schedule and sampling loop
def get_alphas_sigmas(t):
"""Returns the scaling factors for the clean image (alpha) and for the
noise (sigma), given a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
def alpha_sigma_to_t(alpha, sigma):
"""Returns a timestep, given the scaling factors for the clean image and for
the noise."""
return torch.atan2(sigma, alpha) / math.pi * 2
def t_to_alpha_sigma(t):
"""Returns the scaling factors for the clean image and for the noise, given
a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
@torch.no_grad()
def sample_discrete_euler(model, x, steps, sigma_max=1, **extra_args):
"""Draws samples from a model given starting noise. Euler method"""
# Make tensor of ones to broadcast the single t values
ts = x.new_ones([x.shape[0]])
# Create the noise schedule
t = torch.linspace(sigma_max, 0, steps + 1)
#alphas, sigmas = 1-t, t
for t_curr, t_prev in tqdm(zip(t[:-1], t[1:])):
# Broadcast the current timestep to the correct shape
t_curr_tensor = t_curr * torch.ones(
(x.shape[0],), dtype=x.dtype, device=x.device
)
dt = t_prev - t_curr # we solve backwards in our formulation
x = x + dt * model(x, t_curr_tensor, **extra_args) #.denoise(x, denoiser, t_curr_tensor, cond, uc)
# If we are on the last timestep, output the denoised image
return x
@torch.no_grad()
def sample(model, x, steps, eta, **extra_args):
"""Draws samples from a model given starting noise. v-diffusion"""
ts = x.new_ones([x.shape[0]])
# Create the noise schedule
t = torch.linspace(1, 0, steps + 1)[:-1]
alphas, sigmas = get_alphas_sigmas(t)
# The sampling loop
for i in trange(steps):
# Get the model output (v, the predicted velocity)
with torch.cuda.amp.autocast():
v = model(x, ts * t[i], **extra_args).float()
# Predict the noise and the denoised image
pred = x * alphas[i] - v * sigmas[i]
eps = x * sigmas[i] + v * alphas[i]
# If we are not on the last timestep, compute the noisy image for the
# next timestep.
if i < steps - 1:
# If eta > 0, adjust the scaling factor for the predicted noise
# downward according to the amount of additional noise to add
ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
(1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()
# Recombine the predicted noise and predicted denoised image in the
# correct proportions for the next step
x = pred * alphas[i + 1] + eps * adjusted_sigma
# Add the correct amount of fresh noise
if eta:
x += torch.randn_like(x) * ddim_sigma
# If we are on the last timestep, output the denoised image
return pred
# Soft mask inpainting is just shrinking hard (binary) mask inpainting
# Given a float-valued soft mask (values between 0 and 1), get the binary mask for this particular step
def get_bmask(i, steps, mask):
strength = (i+1)/(steps)
# convert to binary mask
bmask = torch.where(mask<=strength,1,0)
return bmask
def make_cond_model_fn(model, cond_fn):
def cond_model_fn(x, sigma, **kwargs):
with torch.enable_grad():
x = x.detach().requires_grad_()
denoised = model(x, sigma, **kwargs)
cond_grad = cond_fn(x, sigma, denoised=denoised, **kwargs).detach()
cond_denoised = denoised.detach() + cond_grad * K.utils.append_dims(sigma**2, x.ndim)
return cond_denoised
return cond_model_fn
# Uses k-diffusion from https://github.com/crowsonkb/k-diffusion
# init_data is init_audio as latents (if this is latent diffusion)
# For sampling, set both init_data and mask to None
# For variations, set init_data
# For inpainting, set both init_data & mask
def sample_k(
model_fn,
noise,
init_data=None,
mask=None,
steps=100,
sampler_type="dpmpp-2m-sde",
sigma_min=0.5,
sigma_max=50,
rho=1.0, device="cuda",
callback=None,
cond_fn=None,
**extra_args
):
denoiser = K.external.VDenoiser(model_fn)
if cond_fn is not None:
denoiser = make_cond_model_fn(denoiser, cond_fn)
# Make the list of sigmas. Sigma values are scalars related to the amount of noise each denoising step has
sigmas = K.sampling.get_sigmas_polyexponential(steps, sigma_min, sigma_max, rho, device=device)
# Scale the initial noise by sigma
noise = noise * sigmas[0]
wrapped_callback = callback
if mask is None and init_data is not None:
# VARIATION (no inpainting)
# set the initial latent to the init_data, and noise it with initial sigma
x = init_data + noise
elif mask is not None and init_data is not None:
# INPAINTING
bmask = get_bmask(0, steps, mask)
# initial noising
input_noised = init_data + noise
# set the initial latent to a mix of init_data and noise, based on step 0's binary mask
x = input_noised * bmask + noise * (1-bmask)
# define the inpainting callback function (Note: side effects, it mutates x)
# See https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L596C13-L596C105
# callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
# This is called immediately after `denoised = model(x, sigmas[i] * s_in, **extra_args)`
def inpainting_callback(args):
i = args["i"]
x = args["x"]
sigma = args["sigma"]
#denoised = args["denoised"]
# noise the init_data input with this step's appropriate amount of noise
input_noised = init_data + torch.randn_like(init_data) * sigma
# shrinking hard mask
bmask = get_bmask(i, steps, mask)
# mix input_noise with x, using binary mask
new_x = input_noised * bmask + x * (1-bmask)
# mutate x
x[:,:,:] = new_x[:,:,:]
# wrap together the inpainting callback and the user-submitted callback.
if callback is None:
wrapped_callback = inpainting_callback
else:
wrapped_callback = lambda args: (inpainting_callback(args), callback(args))
else:
# SAMPLING
# set the initial latent to noise
x = noise
with torch.cuda.amp.autocast():
if sampler_type == "k-heun":
return K.sampling.sample_heun(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-lms":
return K.sampling.sample_lms(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpmpp-2s-ancestral":
return K.sampling.sample_dpmpp_2s_ancestral(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-2":
return K.sampling.sample_dpm_2(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-fast":
return K.sampling.sample_dpm_fast(denoiser, x, sigma_min, sigma_max, steps, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-adaptive":
return K.sampling.sample_dpm_adaptive(denoiser, x, sigma_min, sigma_max, rtol=0.01, atol=0.01, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "dpmpp-2m-sde":
return K.sampling.sample_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "dpmpp-3m-sde":
return K.sampling.sample_dpmpp_3m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
# Uses discrete Euler sampling for rectified flow models
# init_data is init_audio as latents (if this is latent diffusion)
# For sampling, set both init_data and mask to None
# For variations, set init_data
# For inpainting, set both init_data & mask
def sample_rf(
model_fn,
noise,
init_data=None,
steps=100,
sigma_max=1,
device="cuda",
callback=None,
cond_fn=None,
**extra_args
):
if sigma_max > 1:
sigma_max = 1
if cond_fn is not None:
denoiser = make_cond_model_fn(denoiser, cond_fn)
wrapped_callback = callback
if init_data is not None:
# VARIATION (no inpainting)
# Interpolate the init data and the noise for init audio
x = init_data * (1 - sigma_max) + noise * sigma_max
else:
# SAMPLING
# set the initial latent to noise
x = noise
with torch.cuda.amp.autocast():
# TODO: Add callback support
#return sample_discrete_euler(model_fn, x, steps, sigma_max, callback=wrapped_callback, **extra_args)
return sample_discrete_euler(model_fn, x, steps, sigma_max, **extra_args)