|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""HIFI-GAN""" |
|
|
|
import typing as tp |
|
import numpy as np |
|
from scipy.signal import get_window |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn import Conv1d |
|
from torch.nn import ConvTranspose1d |
|
from torch.nn.utils import remove_weight_norm |
|
from torch.nn.utils import weight_norm |
|
from torch.distributions.uniform import Uniform |
|
|
|
from cosyvoice.transformer.activation import Snake |
|
from cosyvoice.utils.common import get_padding |
|
from cosyvoice.utils.common import init_weights |
|
|
|
|
|
"""hifigan based generator implementation. |
|
|
|
This code is modified from https://github.com/jik876/hifi-gan |
|
,https://github.com/kan-bayashi/ParallelWaveGAN and |
|
https://github.com/NVIDIA/BigVGAN |
|
|
|
""" |
|
|
|
|
|
class ResBlock(torch.nn.Module): |
|
"""Residual block module in HiFiGAN/BigVGAN.""" |
|
def __init__( |
|
self, |
|
channels: int = 512, |
|
kernel_size: int = 3, |
|
dilations: tp.List[int] = [1, 3, 5], |
|
): |
|
super(ResBlock, self).__init__() |
|
self.convs1 = nn.ModuleList() |
|
self.convs2 = nn.ModuleList() |
|
|
|
for dilation in dilations: |
|
self.convs1.append( |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=dilation, |
|
padding=get_padding(kernel_size, dilation) |
|
) |
|
) |
|
) |
|
self.convs2.append( |
|
weight_norm( |
|
Conv1d( |
|
channels, |
|
channels, |
|
kernel_size, |
|
1, |
|
dilation=1, |
|
padding=get_padding(kernel_size, 1) |
|
) |
|
) |
|
) |
|
self.convs1.apply(init_weights) |
|
self.convs2.apply(init_weights) |
|
self.activations1 = nn.ModuleList([ |
|
Snake(channels, alpha_logscale=False) |
|
for _ in range(len(self.convs1)) |
|
]) |
|
self.activations2 = nn.ModuleList([ |
|
Snake(channels, alpha_logscale=False) |
|
for _ in range(len(self.convs2)) |
|
]) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
for idx in range(len(self.convs1)): |
|
xt = self.activations1[idx](x) |
|
xt = self.convs1[idx](xt) |
|
xt = self.activations2[idx](xt) |
|
xt = self.convs2[idx](xt) |
|
x = xt + x |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for idx in range(len(self.convs1)): |
|
remove_weight_norm(self.convs1[idx]) |
|
remove_weight_norm(self.convs2[idx]) |
|
|
|
|
|
class SineGen(torch.nn.Module): |
|
""" Definition of sine generator |
|
SineGen(samp_rate, harmonic_num = 0, |
|
sine_amp = 0.1, noise_std = 0.003, |
|
voiced_threshold = 0, |
|
flag_for_pulse=False) |
|
samp_rate: sampling rate in Hz |
|
harmonic_num: number of harmonic overtones (default 0) |
|
sine_amp: amplitude of sine-wavefrom (default 0.1) |
|
noise_std: std of Gaussian noise (default 0.003) |
|
voiced_thoreshold: F0 threshold for U/V classification (default 0) |
|
flag_for_pulse: this SinGen is used inside PulseGen (default False) |
|
Note: when flag_for_pulse is True, the first time step of a voiced |
|
segment is always sin(np.pi) or cos(0) |
|
""" |
|
|
|
def __init__(self, samp_rate, harmonic_num=0, |
|
sine_amp=0.1, noise_std=0.003, |
|
voiced_threshold=0): |
|
super(SineGen, self).__init__() |
|
self.sine_amp = sine_amp |
|
self.noise_std = noise_std |
|
self.harmonic_num = harmonic_num |
|
self.sampling_rate = samp_rate |
|
self.voiced_threshold = voiced_threshold |
|
|
|
def _f02uv(self, f0): |
|
|
|
uv = (f0 > self.voiced_threshold).type(torch.float32) |
|
return uv |
|
|
|
@torch.no_grad() |
|
def forward(self, f0): |
|
""" |
|
:param f0: [B, 1, sample_len], Hz |
|
:return: [B, 1, sample_len] |
|
""" |
|
|
|
F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device) |
|
for i in range(self.harmonic_num + 1): |
|
F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate |
|
|
|
theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1) |
|
u_dist = Uniform(low=-np.pi, high=np.pi) |
|
phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device) |
|
phase_vec[:, 0, :] = 0 |
|
|
|
|
|
sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec) |
|
|
|
|
|
uv = self._f02uv(f0) |
|
|
|
|
|
|
|
|
|
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 |
|
noise = noise_amp * torch.randn_like(sine_waves) |
|
|
|
|
|
|
|
sine_waves = sine_waves * uv + noise |
|
return sine_waves, uv, noise |
|
|
|
|
|
class SourceModuleHnNSF(torch.nn.Module): |
|
""" SourceModule for hn-nsf |
|
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0) |
|
sampling_rate: sampling_rate in Hz |
|
harmonic_num: number of harmonic above F0 (default: 0) |
|
sine_amp: amplitude of sine source signal (default: 0.1) |
|
add_noise_std: std of additive Gaussian noise (default: 0.003) |
|
note that amplitude of noise in unvoiced is decided |
|
by sine_amp |
|
voiced_threshold: threhold to set U/V given F0 (default: 0) |
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) |
|
F0_sampled (batchsize, length, 1) |
|
Sine_source (batchsize, length, 1) |
|
noise_source (batchsize, length 1) |
|
uv (batchsize, length, 1) |
|
""" |
|
|
|
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, |
|
add_noise_std=0.003, voiced_threshod=0): |
|
super(SourceModuleHnNSF, self).__init__() |
|
|
|
self.sine_amp = sine_amp |
|
self.noise_std = add_noise_std |
|
|
|
|
|
self.l_sin_gen = SineGen(sampling_rate, harmonic_num, |
|
sine_amp, add_noise_std, voiced_threshod) |
|
|
|
|
|
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) |
|
self.l_tanh = torch.nn.Tanh() |
|
|
|
def forward(self, x): |
|
""" |
|
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) |
|
F0_sampled (batchsize, length, 1) |
|
Sine_source (batchsize, length, 1) |
|
noise_source (batchsize, length 1) |
|
""" |
|
|
|
with torch.no_grad(): |
|
sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2)) |
|
sine_wavs = sine_wavs.transpose(1, 2) |
|
uv = uv.transpose(1, 2) |
|
sine_merge = self.l_tanh(self.l_linear(sine_wavs)) |
|
|
|
|
|
noise = torch.randn_like(uv) * self.sine_amp / 3 |
|
return sine_merge, noise, uv |
|
|
|
|
|
class HiFTGenerator(nn.Module): |
|
""" |
|
HiFTNet Generator: Neural Source Filter + ISTFTNet |
|
https://arxiv.org/abs/2309.09493 |
|
""" |
|
def __init__( |
|
self, |
|
in_channels: int = 80, |
|
base_channels: int = 512, |
|
nb_harmonics: int = 8, |
|
sampling_rate: int = 22050, |
|
nsf_alpha: float = 0.1, |
|
nsf_sigma: float = 0.003, |
|
nsf_voiced_threshold: float = 10, |
|
upsample_rates: tp.List[int] = [8, 8], |
|
upsample_kernel_sizes: tp.List[int] = [16, 16], |
|
istft_params: tp.Dict[str, int] = {"n_fft": 16, "hop_len": 4}, |
|
resblock_kernel_sizes: tp.List[int] = [3, 7, 11], |
|
resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], |
|
source_resblock_kernel_sizes: tp.List[int] = [7, 11], |
|
source_resblock_dilation_sizes: tp.List[tp.List[int]] = [[1, 3, 5], [1, 3, 5]], |
|
lrelu_slope: float = 0.1, |
|
audio_limit: float = 0.99, |
|
f0_predictor: torch.nn.Module = None, |
|
): |
|
super(HiFTGenerator, self).__init__() |
|
|
|
self.out_channels = 1 |
|
self.nb_harmonics = nb_harmonics |
|
self.sampling_rate = sampling_rate |
|
self.istft_params = istft_params |
|
self.lrelu_slope = lrelu_slope |
|
self.audio_limit = audio_limit |
|
|
|
self.num_kernels = len(resblock_kernel_sizes) |
|
self.num_upsamples = len(upsample_rates) |
|
self.m_source = SourceModuleHnNSF( |
|
sampling_rate=sampling_rate, |
|
upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"], |
|
harmonic_num=nb_harmonics, |
|
sine_amp=nsf_alpha, |
|
add_noise_std=nsf_sigma, |
|
voiced_threshod=nsf_voiced_threshold) |
|
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"]) |
|
|
|
self.conv_pre = weight_norm( |
|
Conv1d(in_channels, base_channels, 7, 1, padding=3) |
|
) |
|
|
|
|
|
self.ups = nn.ModuleList() |
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): |
|
self.ups.append( |
|
weight_norm( |
|
ConvTranspose1d( |
|
base_channels // (2**i), |
|
base_channels // (2**(i + 1)), |
|
k, |
|
u, |
|
padding=(k - u) // 2, |
|
) |
|
) |
|
) |
|
|
|
|
|
self.source_downs = nn.ModuleList() |
|
self.source_resblocks = nn.ModuleList() |
|
downsample_rates = [1] + upsample_rates[::-1][:-1] |
|
downsample_cum_rates = np.cumprod(downsample_rates) |
|
for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)): |
|
if u == 1: |
|
self.source_downs.append( |
|
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1) |
|
) |
|
else: |
|
self.source_downs.append( |
|
Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2)) |
|
) |
|
|
|
self.source_resblocks.append( |
|
ResBlock(base_channels // (2 ** (i + 1)), k, d) |
|
) |
|
|
|
self.resblocks = nn.ModuleList() |
|
for i in range(len(self.ups)): |
|
ch = base_channels // (2**(i + 1)) |
|
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): |
|
self.resblocks.append(ResBlock(ch, k, d)) |
|
|
|
self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3)) |
|
self.ups.apply(init_weights) |
|
self.conv_post.apply(init_weights) |
|
self.reflection_pad = nn.ReflectionPad1d((1, 0)) |
|
self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32)) |
|
self.f0_predictor = f0_predictor |
|
|
|
def _f02source(self, f0: torch.Tensor) -> torch.Tensor: |
|
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) |
|
|
|
har_source, _, _ = self.m_source(f0) |
|
return har_source.transpose(1, 2) |
|
|
|
def _stft(self, x): |
|
spec = torch.stft( |
|
x, |
|
self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device), |
|
return_complex=True) |
|
spec = torch.view_as_real(spec) |
|
return spec[..., 0], spec[..., 1] |
|
|
|
def _istft(self, magnitude, phase): |
|
magnitude = torch.clip(magnitude, max=1e2) |
|
real = magnitude * torch.cos(phase) |
|
img = magnitude * torch.sin(phase) |
|
inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], |
|
self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device)) |
|
return inverse_transform |
|
|
|
def forward(self, x: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor: |
|
f0 = self.f0_predictor(x) |
|
s = self._f02source(f0) |
|
|
|
|
|
if cache_source.shape[2] != 0: |
|
s[:, :, :cache_source.shape[2]] = cache_source |
|
|
|
s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) |
|
s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1) |
|
|
|
x = self.conv_pre(x) |
|
for i in range(self.num_upsamples): |
|
x = F.leaky_relu(x, self.lrelu_slope) |
|
x = self.ups[i](x) |
|
|
|
if i == self.num_upsamples - 1: |
|
x = self.reflection_pad(x) |
|
|
|
|
|
si = self.source_downs[i](s_stft) |
|
si = self.source_resblocks[i](si) |
|
x = x + si |
|
|
|
xs = None |
|
for j in range(self.num_kernels): |
|
if xs is None: |
|
xs = self.resblocks[i * self.num_kernels + j](x) |
|
else: |
|
xs += self.resblocks[i * self.num_kernels + j](x) |
|
x = xs / self.num_kernels |
|
|
|
x = F.leaky_relu(x) |
|
x = self.conv_post(x) |
|
magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :]) |
|
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) |
|
|
|
x = self._istft(magnitude, phase) |
|
x = torch.clamp(x, -self.audio_limit, self.audio_limit) |
|
return x, s |
|
|
|
def remove_weight_norm(self): |
|
print('Removing weight norm...') |
|
for l in self.ups: |
|
remove_weight_norm(l) |
|
for l in self.resblocks: |
|
l.remove_weight_norm() |
|
remove_weight_norm(self.conv_pre) |
|
remove_weight_norm(self.conv_post) |
|
self.source_module.remove_weight_norm() |
|
for l in self.source_downs: |
|
remove_weight_norm(l) |
|
for l in self.source_resblocks: |
|
l.remove_weight_norm() |
|
|
|
@torch.inference_mode() |
|
def inference(self, mel: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor: |
|
return self.forward(x=mel, cache_source=cache_source) |