|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import random |
|
from typing import Dict, Optional |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from omegaconf import DictConfig |
|
from cosyvoice.utils.mask import make_pad_mask |
|
|
|
|
|
class MaskedDiffWithXvec(torch.nn.Module): |
|
def __init__(self, |
|
input_size: int = 512, |
|
output_size: int = 80, |
|
spk_embed_dim: int = 192, |
|
output_type: str = "mel", |
|
vocab_size: int = 4096, |
|
input_frame_rate: int = 50, |
|
only_mask_loss: bool = True, |
|
encoder: torch.nn.Module = None, |
|
length_regulator: torch.nn.Module = None, |
|
decoder: torch.nn.Module = None, |
|
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1, 'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine', 'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}), 'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64, 'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}}, |
|
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050, 'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}): |
|
super().__init__() |
|
self.input_size = input_size |
|
self.output_size = output_size |
|
self.decoder_conf = decoder_conf |
|
self.mel_feat_conf = mel_feat_conf |
|
self.vocab_size = vocab_size |
|
self.output_type = output_type |
|
self.input_frame_rate = input_frame_rate |
|
logging.info(f"input frame rate={self.input_frame_rate}") |
|
self.input_embedding = nn.Embedding(vocab_size, input_size) |
|
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, output_size) |
|
self.encoder = encoder |
|
self.encoder_proj = torch.nn.Linear(self.encoder.output_size(), output_size) |
|
self.decoder = decoder |
|
self.length_regulator = length_regulator |
|
self.only_mask_loss = only_mask_loss |
|
|
|
def forward( |
|
self, |
|
batch: dict, |
|
device: torch.device, |
|
) -> Dict[str, Optional[torch.Tensor]]: |
|
token = batch['speech_token'].to(device) |
|
token_len = batch['speech_token_len'].to(device) |
|
feat = batch['speech_feat'].to(device) |
|
feat_len = batch['speech_feat_len'].to(device) |
|
embedding = batch['embedding'].to(device) |
|
|
|
|
|
embedding = F.normalize(embedding, dim=1) |
|
embedding = self.spk_embed_affine_layer(embedding) |
|
|
|
|
|
|
|
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(device) |
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask |
|
|
|
|
|
h, h_lengths = self.encoder(token, token_len) |
|
h = self.encoder_proj(h) |
|
h, h_lengths = self.length_regulator(h, feat_len) |
|
|
|
|
|
conds = torch.zeros(feat.shape, device=token.device) |
|
|
|
|
|
|
|
|
|
|
|
conds = conds.transpose(1, 2) |
|
|
|
mask = (~make_pad_mask(feat_len)).to(h) |
|
feat = F.interpolate(feat.unsqueeze(dim=1), size=h.shape[1:], mode="nearest").squeeze(dim=1) |
|
loss, _ = self.decoder.compute_loss( |
|
feat.transpose(1, 2).contiguous(), |
|
mask.unsqueeze(1), |
|
h.transpose(1, 2).contiguous(), |
|
embedding, |
|
cond=conds |
|
) |
|
return {'loss': loss} |
|
|
|
@torch.inference_mode() |
|
def inference(self, |
|
token, |
|
token_len, |
|
prompt_token, |
|
prompt_token_len, |
|
prompt_feat, |
|
prompt_feat_len, |
|
embedding): |
|
assert token.shape[0] == 1 |
|
|
|
embedding = F.normalize(embedding, dim=1) |
|
embedding = self.spk_embed_affine_layer(embedding) |
|
|
|
|
|
token, token_len = torch.concat([prompt_token, token], dim=1), prompt_token_len + token_len |
|
mask = (~make_pad_mask(token_len)).float().unsqueeze(-1).to(embedding) |
|
token = self.input_embedding(torch.clamp(token, min=0)) * mask |
|
|
|
|
|
h, h_lengths = self.encoder(token, token_len) |
|
h = self.encoder_proj(h) |
|
feat_len = (token_len / self.input_frame_rate * 22050 / 256).int() |
|
h, h_lengths = self.length_regulator(h, feat_len) |
|
|
|
|
|
conds = torch.zeros([1, feat_len.max().item(), self.output_size], device=token.device) |
|
if prompt_feat.shape[1] != 0: |
|
for i, j in enumerate(prompt_feat_len): |
|
conds[i, :j] = prompt_feat[i] |
|
conds = conds.transpose(1, 2) |
|
|
|
mask = (~make_pad_mask(feat_len)).to(h) |
|
feat = self.decoder( |
|
mu=h.transpose(1, 2).contiguous(), |
|
mask=mask.unsqueeze(1), |
|
spks=embedding, |
|
cond=conds, |
|
n_timesteps=10 |
|
) |
|
if prompt_feat.shape[1] != 0: |
|
feat = feat[:, :, prompt_feat.shape[1]:] |
|
return feat |
|
|