|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Positonal Encoding Module.""" |
|
|
|
import math |
|
from typing import Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
|
|
class PositionalEncoding(torch.nn.Module): |
|
"""Positional encoding. |
|
|
|
:param int d_model: embedding dim |
|
:param float dropout_rate: dropout rate |
|
:param int max_len: maximum input length |
|
|
|
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel))) |
|
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel))) |
|
""" |
|
|
|
def __init__(self, |
|
d_model: int, |
|
dropout_rate: float, |
|
max_len: int = 5000, |
|
reverse: bool = False): |
|
"""Construct an PositionalEncoding object.""" |
|
super().__init__() |
|
self.d_model = d_model |
|
self.xscale = math.sqrt(self.d_model) |
|
self.dropout = torch.nn.Dropout(p=dropout_rate) |
|
self.max_len = max_len |
|
|
|
self.pe = torch.zeros(self.max_len, self.d_model) |
|
position = torch.arange(0, self.max_len, |
|
dtype=torch.float32).unsqueeze(1) |
|
div_term = torch.exp( |
|
torch.arange(0, self.d_model, 2, dtype=torch.float32) * |
|
-(math.log(10000.0) / self.d_model)) |
|
self.pe[:, 0::2] = torch.sin(position * div_term) |
|
self.pe[:, 1::2] = torch.cos(position * div_term) |
|
self.pe = self.pe.unsqueeze(0) |
|
|
|
def forward(self, |
|
x: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0) \ |
|
-> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Add positional encoding. |
|
|
|
Args: |
|
x (torch.Tensor): Input. Its shape is (batch, time, ...) |
|
offset (int, torch.tensor): position offset |
|
|
|
Returns: |
|
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...) |
|
torch.Tensor: for compatibility to RelPositionalEncoding |
|
""" |
|
|
|
self.pe = self.pe.to(x.device) |
|
pos_emb = self.position_encoding(offset, x.size(1), False) |
|
x = x * self.xscale + pos_emb |
|
return self.dropout(x), self.dropout(pos_emb) |
|
|
|
def position_encoding(self, |
|
offset: Union[int, torch.Tensor], |
|
size: int, |
|
apply_dropout: bool = True) -> torch.Tensor: |
|
""" For getting encoding in a streaming fashion |
|
|
|
Attention!!!!! |
|
we apply dropout only once at the whole utterance level in a none |
|
streaming way, but will call this function several times with |
|
increasing input size in a streaming scenario, so the dropout will |
|
be applied several times. |
|
|
|
Args: |
|
offset (int or torch.tensor): start offset |
|
size (int): required size of position encoding |
|
|
|
Returns: |
|
torch.Tensor: Corresponding encoding |
|
""" |
|
|
|
|
|
if isinstance(offset, int): |
|
assert offset + size <= self.max_len |
|
pos_emb = self.pe[:, offset:offset + size] |
|
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: |
|
assert offset + size <= self.max_len |
|
pos_emb = self.pe[:, offset:offset + size] |
|
else: |
|
assert torch.max(offset) + size <= self.max_len |
|
index = offset.unsqueeze(1) + \ |
|
torch.arange(0, size).to(offset.device) |
|
flag = index > 0 |
|
|
|
index = index * flag |
|
pos_emb = F.embedding(index, self.pe[0]) |
|
|
|
if apply_dropout: |
|
pos_emb = self.dropout(pos_emb) |
|
return pos_emb |
|
|
|
|
|
class RelPositionalEncoding(PositionalEncoding): |
|
"""Relative positional encoding module. |
|
See : Appendix B in https://arxiv.org/abs/1901.02860 |
|
Args: |
|
d_model (int): Embedding dimension. |
|
dropout_rate (float): Dropout rate. |
|
max_len (int): Maximum input length. |
|
""" |
|
|
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): |
|
"""Initialize class.""" |
|
super().__init__(d_model, dropout_rate, max_len, reverse=True) |
|
|
|
def forward(self, |
|
x: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0) \ |
|
-> Tuple[torch.Tensor, torch.Tensor]: |
|
"""Compute positional encoding. |
|
Args: |
|
x (torch.Tensor): Input tensor (batch, time, `*`). |
|
Returns: |
|
torch.Tensor: Encoded tensor (batch, time, `*`). |
|
torch.Tensor: Positional embedding tensor (1, time, `*`). |
|
""" |
|
self.pe = self.pe.to(x.device) |
|
x = x * self.xscale |
|
pos_emb = self.position_encoding(offset, x.size(1), False) |
|
return self.dropout(x), self.dropout(pos_emb) |
|
|
|
|
|
class WhisperPositionalEncoding(PositionalEncoding): |
|
""" Sinusoids position encoding used in openai-whisper.encoder |
|
""" |
|
|
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500): |
|
super().__init__(d_model, dropout_rate, max_len) |
|
self.xscale = 1.0 |
|
log_timescale_increment = np.log(10000) / (d_model // 2 - 1) |
|
inv_timescales = torch.exp(-log_timescale_increment * |
|
torch.arange(d_model // 2)) |
|
scaled_time = torch.arange(max_len)[:, np.newaxis] * \ |
|
inv_timescales[np.newaxis, :] |
|
pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) |
|
delattr(self, "pe") |
|
self.register_buffer("pe", pe.unsqueeze(0)) |
|
|
|
|
|
class LearnablePositionalEncoding(PositionalEncoding): |
|
""" Learnable position encoding used in openai-whisper.decoder |
|
""" |
|
|
|
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448): |
|
super().__init__(d_model, dropout_rate, max_len) |
|
|
|
self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model)) |
|
self.xscale = 1.0 |
|
|
|
|
|
class NoPositionalEncoding(torch.nn.Module): |
|
""" No position encoding |
|
""" |
|
|
|
def __init__(self, d_model: int, dropout_rate: float): |
|
super().__init__() |
|
self.d_model = d_model |
|
self.dropout = torch.nn.Dropout(p=dropout_rate) |
|
|
|
def forward(self, |
|
x: torch.Tensor, |
|
offset: Union[int, torch.Tensor] = 0) \ |
|
-> Tuple[torch.Tensor, torch.Tensor]: |
|
""" Just return zero vector for interface compatibility |
|
""" |
|
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device) |
|
return self.dropout(x), pos_emb |
|
|
|
def position_encoding(self, offset: Union[int, torch.Tensor], |
|
size: int) -> torch.Tensor: |
|
return torch.zeros(1, size, self.d_model) |
|
|
|
|
|
class EspnetRelPositionalEncoding(torch.nn.Module): |
|
"""Relative positional encoding module (new implementation). |
|
|
|
Details can be found in https://github.com/espnet/espnet/pull/2816. |
|
|
|
See : Appendix B in https://arxiv.org/abs/1901.02860 |
|
|
|
Args: |
|
d_model (int): Embedding dimension. |
|
dropout_rate (float): Dropout rate. |
|
max_len (int): Maximum input length. |
|
|
|
""" |
|
|
|
def __init__(self, d_model, dropout_rate, max_len=5000): |
|
"""Construct an PositionalEncoding object.""" |
|
super(EspnetRelPositionalEncoding, self).__init__() |
|
self.d_model = d_model |
|
self.xscale = math.sqrt(self.d_model) |
|
self.dropout = torch.nn.Dropout(p=dropout_rate) |
|
self.pe = None |
|
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) |
|
|
|
def extend_pe(self, x): |
|
"""Reset the positional encodings.""" |
|
if self.pe is not None: |
|
|
|
|
|
if self.pe.size(1) >= x.size(1) * 2 - 1: |
|
if self.pe.dtype != x.dtype or self.pe.device != x.device: |
|
self.pe = self.pe.to(dtype=x.dtype, device=x.device) |
|
return |
|
|
|
|
|
|
|
pe_positive = torch.zeros(x.size(1), self.d_model) |
|
pe_negative = torch.zeros(x.size(1), self.d_model) |
|
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) |
|
div_term = torch.exp( |
|
torch.arange(0, self.d_model, 2, dtype=torch.float32) |
|
* -(math.log(10000.0) / self.d_model) |
|
) |
|
pe_positive[:, 0::2] = torch.sin(position * div_term) |
|
pe_positive[:, 1::2] = torch.cos(position * div_term) |
|
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) |
|
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) |
|
|
|
|
|
|
|
|
|
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) |
|
pe_negative = pe_negative[1:].unsqueeze(0) |
|
pe = torch.cat([pe_positive, pe_negative], dim=1) |
|
self.pe = pe.to(device=x.device, dtype=x.dtype) |
|
|
|
def forward(self, x: torch.Tensor, offset: Union[int, torch.Tensor] = 0): |
|
"""Add positional encoding. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor (batch, time, `*`). |
|
|
|
Returns: |
|
torch.Tensor: Encoded tensor (batch, time, `*`). |
|
|
|
""" |
|
self.extend_pe(x) |
|
x = x * self.xscale |
|
pos_emb = self.position_encoding(size=x.size(1), offset=offset) |
|
return self.dropout(x), self.dropout(pos_emb) |
|
|
|
def position_encoding(self, |
|
offset: Union[int, torch.Tensor], |
|
size: int) -> torch.Tensor: |
|
""" For getting encoding in a streaming fashion |
|
|
|
Attention!!!!! |
|
we apply dropout only once at the whole utterance level in a none |
|
streaming way, but will call this function several times with |
|
increasing input size in a streaming scenario, so the dropout will |
|
be applied several times. |
|
|
|
Args: |
|
offset (int or torch.tensor): start offset |
|
size (int): required size of position encoding |
|
|
|
Returns: |
|
torch.Tensor: Corresponding encoding |
|
""" |
|
pos_emb = self.pe[ |
|
:, |
|
self.pe.size(1) // 2 - size + 1 : self.pe.size(1) // 2 + size, |
|
] |
|
return pos_emb |
|
|