|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Positionwise feed forward layer definition.""" |
|
|
|
import torch |
|
|
|
|
|
class PositionwiseFeedForward(torch.nn.Module): |
|
"""Positionwise feed forward layer. |
|
|
|
FeedForward are appied on each position of the sequence. |
|
The output dim is same with the input dim. |
|
|
|
Args: |
|
idim (int): Input dimenstion. |
|
hidden_units (int): The number of hidden units. |
|
dropout_rate (float): Dropout rate. |
|
activation (torch.nn.Module): Activation function |
|
""" |
|
|
|
def __init__( |
|
self, |
|
idim: int, |
|
hidden_units: int, |
|
dropout_rate: float, |
|
activation: torch.nn.Module = torch.nn.ReLU(), |
|
): |
|
"""Construct a PositionwiseFeedForward object.""" |
|
super(PositionwiseFeedForward, self).__init__() |
|
self.w_1 = torch.nn.Linear(idim, hidden_units) |
|
self.activation = activation |
|
self.dropout = torch.nn.Dropout(dropout_rate) |
|
self.w_2 = torch.nn.Linear(hidden_units, idim) |
|
|
|
def forward(self, xs: torch.Tensor) -> torch.Tensor: |
|
"""Forward function. |
|
|
|
Args: |
|
xs: input tensor (B, L, D) |
|
Returns: |
|
output tensor, (B, L, D) |
|
""" |
|
return self.w_2(self.dropout(self.activation(self.w_1(xs)))) |
|
|
|
|
|
class MoEFFNLayer(torch.nn.Module): |
|
""" |
|
Mixture of expert with Positionwise feed forward layer |
|
See also figure 1 in https://arxiv.org/pdf/2305.15663.pdf |
|
The output dim is same with the input dim. |
|
|
|
Modified from https://github.com/Lightning-AI/lit-gpt/pull/823 |
|
https://github.com/mistralai/mistral-src/blob/b46d6/moe_one_file_ref.py#L203-L219 |
|
Args: |
|
n_expert: number of expert. |
|
n_expert_per_token: The actual number of experts used for each frame |
|
idim (int): Input dimenstion. |
|
hidden_units (int): The number of hidden units. |
|
dropout_rate (float): Dropout rate. |
|
activation (torch.nn.Module): Activation function |
|
""" |
|
|
|
def __init__( |
|
self, |
|
n_expert: int, |
|
n_expert_per_token: int, |
|
idim: int, |
|
hidden_units: int, |
|
dropout_rate: float, |
|
activation: torch.nn.Module = torch.nn.ReLU(), |
|
): |
|
super(MoEFFNLayer, self).__init__() |
|
self.gate = torch.nn.Linear(idim, n_expert, bias=False) |
|
self.experts = torch.nn.ModuleList( |
|
PositionwiseFeedForward(idim, hidden_units, dropout_rate, |
|
activation) for _ in range(n_expert)) |
|
self.n_expert_per_token = n_expert_per_token |
|
|
|
def forward(self, xs: torch.Tensor) -> torch.Tensor: |
|
"""Foward function. |
|
Args: |
|
xs: input tensor (B, L, D) |
|
Returns: |
|
output tensor, (B, L, D) |
|
|
|
""" |
|
B, L, D = xs.size( |
|
) |
|
xs = xs.view(-1, D) |
|
router = self.gate(xs) |
|
logits, indices = torch.topk( |
|
router, self.n_expert_per_token |
|
) |
|
weights = torch.nn.functional.softmax( |
|
logits, dim=1, |
|
dtype=torch.float).to(dtype=xs.dtype) |
|
output = torch.zeros_like(xs) |
|
for i, expert in enumerate(self.experts): |
|
mask = indices == i |
|
batch_idx, ith_expert = torch.where(mask) |
|
output[batch_idx] += weights[batch_idx, ith_expert, None] * expert( |
|
xs[batch_idx]) |
|
return output.view(B, L, D) |
|
|