|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Decoder self-attention layer definition.""" |
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
from torch import nn |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
"""Single decoder layer module. |
|
|
|
Args: |
|
size (int): Input dimension. |
|
self_attn (torch.nn.Module): Self-attention module instance. |
|
`MultiHeadedAttention` instance can be used as the argument. |
|
src_attn (torch.nn.Module): Inter-attention module instance. |
|
`MultiHeadedAttention` instance can be used as the argument. |
|
If `None` is passed, Inter-attention is not used, such as |
|
CIF, GPT, and other decoder only model. |
|
feed_forward (torch.nn.Module): Feed-forward module instance. |
|
`PositionwiseFeedForward` instance can be used as the argument. |
|
dropout_rate (float): Dropout rate. |
|
normalize_before (bool): |
|
True: use layer_norm before each sub-block. |
|
False: to use layer_norm after each sub-block. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
size: int, |
|
self_attn: nn.Module, |
|
src_attn: Optional[nn.Module], |
|
feed_forward: nn.Module, |
|
dropout_rate: float, |
|
normalize_before: bool = True, |
|
): |
|
"""Construct an DecoderLayer object.""" |
|
super().__init__() |
|
self.size = size |
|
self.self_attn = self_attn |
|
self.src_attn = src_attn |
|
self.feed_forward = feed_forward |
|
self.norm1 = nn.LayerNorm(size, eps=1e-5) |
|
self.norm2 = nn.LayerNorm(size, eps=1e-5) |
|
self.norm3 = nn.LayerNorm(size, eps=1e-5) |
|
self.dropout = nn.Dropout(dropout_rate) |
|
self.normalize_before = normalize_before |
|
|
|
def forward( |
|
self, |
|
tgt: torch.Tensor, |
|
tgt_mask: torch.Tensor, |
|
memory: torch.Tensor, |
|
memory_mask: torch.Tensor, |
|
cache: Optional[torch.Tensor] = None |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Compute decoded features. |
|
|
|
Args: |
|
tgt (torch.Tensor): Input tensor (#batch, maxlen_out, size). |
|
tgt_mask (torch.Tensor): Mask for input tensor |
|
(#batch, maxlen_out). |
|
memory (torch.Tensor): Encoded memory |
|
(#batch, maxlen_in, size). |
|
memory_mask (torch.Tensor): Encoded memory mask |
|
(#batch, maxlen_in). |
|
cache (torch.Tensor): cached tensors. |
|
(#batch, maxlen_out - 1, size). |
|
|
|
Returns: |
|
torch.Tensor: Output tensor (#batch, maxlen_out, size). |
|
torch.Tensor: Mask for output tensor (#batch, maxlen_out). |
|
torch.Tensor: Encoded memory (#batch, maxlen_in, size). |
|
torch.Tensor: Encoded memory mask (#batch, maxlen_in). |
|
|
|
""" |
|
residual = tgt |
|
if self.normalize_before: |
|
tgt = self.norm1(tgt) |
|
|
|
if cache is None: |
|
tgt_q = tgt |
|
tgt_q_mask = tgt_mask |
|
else: |
|
|
|
assert cache.shape == ( |
|
tgt.shape[0], |
|
tgt.shape[1] - 1, |
|
self.size, |
|
), "{cache.shape} == {(tgt.shape[0], tgt.shape[1] - 1, self.size)}" |
|
tgt_q = tgt[:, -1:, :] |
|
residual = residual[:, -1:, :] |
|
tgt_q_mask = tgt_mask[:, -1:, :] |
|
|
|
x = residual + self.dropout( |
|
self.self_attn(tgt_q, tgt, tgt, tgt_q_mask)[0]) |
|
if not self.normalize_before: |
|
x = self.norm1(x) |
|
|
|
if self.src_attn is not None: |
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm2(x) |
|
x = residual + self.dropout( |
|
self.src_attn(x, memory, memory, memory_mask)[0]) |
|
if not self.normalize_before: |
|
x = self.norm2(x) |
|
|
|
residual = x |
|
if self.normalize_before: |
|
x = self.norm3(x) |
|
x = residual + self.dropout(self.feed_forward(x)) |
|
if not self.normalize_before: |
|
x = self.norm3(x) |
|
|
|
if cache is not None: |
|
x = torch.cat([cache, x], dim=1) |
|
|
|
return x, tgt_mask, memory, memory_mask |
|
|