|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn.utils import weight_norm |
|
|
|
|
|
class ConvRNNF0Predictor(nn.Module): |
|
def __init__(self, |
|
num_class: int = 1, |
|
in_channels: int = 80, |
|
cond_channels: int = 512 |
|
): |
|
super().__init__() |
|
|
|
self.num_class = num_class |
|
self.condnet = nn.Sequential( |
|
weight_norm( |
|
nn.Conv1d(in_channels, cond_channels, kernel_size=3, padding=1) |
|
), |
|
nn.ELU(), |
|
weight_norm( |
|
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1) |
|
), |
|
nn.ELU(), |
|
weight_norm( |
|
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1) |
|
), |
|
nn.ELU(), |
|
weight_norm( |
|
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1) |
|
), |
|
nn.ELU(), |
|
weight_norm( |
|
nn.Conv1d(cond_channels, cond_channels, kernel_size=3, padding=1) |
|
), |
|
nn.ELU(), |
|
) |
|
self.classifier = nn.Linear(in_features=cond_channels, out_features=self.num_class) |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
x = self.condnet(x) |
|
x = x.transpose(1, 2) |
|
return torch.abs(self.classifier(x).squeeze(-1)) |
|
|