|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Swish() activation function for Conformer.""" |
|
|
|
import torch |
|
from torch import nn, sin, pow |
|
from torch.nn import Parameter |
|
|
|
|
|
class Swish(torch.nn.Module): |
|
"""Construct an Swish object.""" |
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Return Swish activation function.""" |
|
return x * torch.sigmoid(x) |
|
|
|
|
|
|
|
|
|
class Snake(nn.Module): |
|
''' |
|
Implementation of a sine-based periodic activation function |
|
Shape: |
|
- Input: (B, C, T) |
|
- Output: (B, C, T), same shape as the input |
|
Parameters: |
|
- alpha - trainable parameter |
|
References: |
|
- This activation function is from this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: |
|
https://arxiv.org/abs/2006.08195 |
|
Examples: |
|
>>> a1 = snake(256) |
|
>>> x = torch.randn(256) |
|
>>> x = a1(x) |
|
''' |
|
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False): |
|
''' |
|
Initialization. |
|
INPUT: |
|
- in_features: shape of the input |
|
- alpha: trainable parameter |
|
alpha is initialized to 1 by default, higher values = higher-frequency. |
|
alpha will be trained along with the rest of your model. |
|
''' |
|
super(Snake, self).__init__() |
|
self.in_features = in_features |
|
|
|
|
|
self.alpha_logscale = alpha_logscale |
|
if self.alpha_logscale: |
|
self.alpha = Parameter(torch.zeros(in_features) * alpha) |
|
else: |
|
self.alpha = Parameter(torch.ones(in_features) * alpha) |
|
|
|
self.alpha.requires_grad = alpha_trainable |
|
|
|
self.no_div_by_zero = 0.000000001 |
|
|
|
def forward(self, x): |
|
''' |
|
Forward pass of the function. |
|
Applies the function to the input elementwise. |
|
Snake ∶= x + 1/a * sin^2 (xa) |
|
''' |
|
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) |
|
if self.alpha_logscale: |
|
alpha = torch.exp(alpha) |
|
x = x + (1.0 / (alpha + self.no_div_by_zero)) * pow(sin(x * alpha), 2) |
|
|
|
return x |
|
|