upload 8 files
Browse files- config.json +46 -0
- configuration_vitphi.py +63 -0
- generation_config.json +6 -0
- modeling_vitphi.py +796 -0
- tokenization_vitphi.py +574 -0
- tokenizer_config.json +10 -0
- visual.py +428 -0
- vocab.tiktoken +0 -0
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "vit-phi-1.5",
|
3 |
+
"activation_function": "gelu_new",
|
4 |
+
"architecture": {
|
5 |
+
"block_cls": "parallel",
|
6 |
+
"mixer": {},
|
7 |
+
"mlp": {
|
8 |
+
"mlp_cls": "mlp"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"architectures": [
|
12 |
+
"MixFormerVLSequentialForCausalLM"
|
13 |
+
],
|
14 |
+
"auto_map": {
|
15 |
+
"AutoConfig": "configuration_mixformer_sequential.MixFormerVLSequentialConfig",
|
16 |
+
"AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerVLSequentialForCausalLM"
|
17 |
+
},
|
18 |
+
"embd_layer": "default",
|
19 |
+
"embd_pdrop": 0.0,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"layer_norm_epsilon": 1e-05,
|
22 |
+
"model_type": "mixformer-sequential",
|
23 |
+
"n_embd": 2048,
|
24 |
+
"n_head": 32,
|
25 |
+
"n_inner": null,
|
26 |
+
"n_layer": 24,
|
27 |
+
"n_positions": 2048,
|
28 |
+
"phyagi_version": "0.0.4.dev",
|
29 |
+
"resid_pdrop": 0.0,
|
30 |
+
"rotary_dim": 32,
|
31 |
+
"tie_word_embeddings": false,
|
32 |
+
"torch_dtype": "float16",
|
33 |
+
"transformers_version": "4.32.1",
|
34 |
+
"tokenizer_type": "VitPhiTokenizer",
|
35 |
+
"visual": {
|
36 |
+
"heads": 16,
|
37 |
+
"image_size": 448,
|
38 |
+
"image_start_id": 50470,
|
39 |
+
"layers": 48,
|
40 |
+
"mlp_ratio": 4.9231,
|
41 |
+
"output_dim": 4096,
|
42 |
+
"patch_size": 14,
|
43 |
+
"width": 1664
|
44 |
+
},
|
45 |
+
"vocab_size": 51200
|
46 |
+
}
|
configuration_vitphi.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
import math
|
5 |
+
from typing import Any, Dict, List, Optional, Union
|
6 |
+
|
7 |
+
from transformers import PretrainedConfig
|
8 |
+
|
9 |
+
|
10 |
+
class MixFormerVLSequentialConfig(PretrainedConfig):
|
11 |
+
"""MixFormer (sequential for DeepSpeed) configuration."""
|
12 |
+
|
13 |
+
model_type = "mixformer-sequential"
|
14 |
+
|
15 |
+
attribute_map = {
|
16 |
+
"max_position_embeddings": "n_positions",
|
17 |
+
"hidden_size": "n_embd",
|
18 |
+
"num_attention_heads": "n_head",
|
19 |
+
"num_hidden_layers": "n_layer",
|
20 |
+
"input_emb_layer": "embd_layer", # `input_emb_layer` key is for backward compatibility
|
21 |
+
"blocks": "architecture", # `blocks` key is for backward compatibility
|
22 |
+
}
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
vocab_size: Optional[int] = 50304,
|
27 |
+
n_positions: Optional[int] = 2048,
|
28 |
+
n_embd: Optional[int] = 1024,
|
29 |
+
n_layer: Optional[int] = 20,
|
30 |
+
n_inner: Optional[int] = None,
|
31 |
+
n_head: Optional[int] = 16,
|
32 |
+
rotary_dim: Optional[int] = 32,
|
33 |
+
activation_function: Optional[str] = "gelu_new",
|
34 |
+
embd_layer: Optional[str] = "default",
|
35 |
+
architecture: Union[Dict[str, Any], List[Dict[str, Any]]] = None,
|
36 |
+
embd_pdrop: Optional[float] = 0.0,
|
37 |
+
resid_pdrop: Optional[float] = 0.0,
|
38 |
+
layer_norm_epsilon: Optional[float] = 1e-5,
|
39 |
+
initializer_range: Optional[float] = 0.02,
|
40 |
+
tie_word_embeddings: Optional[bool] = False,
|
41 |
+
pad_vocab_size_multiple: Optional[int] = 64,
|
42 |
+
|
43 |
+
# vit_hidden_size: Optional[int] = 4096,
|
44 |
+
|
45 |
+
**kwargs
|
46 |
+
) -> None:
|
47 |
+
self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
|
48 |
+
self.n_positions = n_positions
|
49 |
+
self.n_embd = n_embd
|
50 |
+
self.n_layer = n_layer
|
51 |
+
self.n_inner = n_inner
|
52 |
+
self.n_head = n_head
|
53 |
+
self.rotary_dim = min(rotary_dim, n_embd // n_head)
|
54 |
+
self.activation_function = activation_function
|
55 |
+
self.embd_layer = embd_layer
|
56 |
+
self.architecture = architecture
|
57 |
+
self.embd_pdrop = embd_pdrop
|
58 |
+
self.resid_pdrop = resid_pdrop
|
59 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
60 |
+
self.initializer_range = initializer_range
|
61 |
+
# self.vit_hidden_size = vit_hidden_size
|
62 |
+
|
63 |
+
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 50256,
|
4 |
+
"transformers_version": "4.32.1"
|
5 |
+
|
6 |
+
}
|
modeling_vitphi.py
ADDED
@@ -0,0 +1,796 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
# Licensed under the MIT license.
|
3 |
+
|
4 |
+
# BSD 3-Clause License
|
5 |
+
#
|
6 |
+
# Copyright (c) 2022, Tri Dao, [email protected].
|
7 |
+
# All rights reserved.
|
8 |
+
#
|
9 |
+
# Redistribution and use in source and binary forms, with or without
|
10 |
+
# modification, are permitted provided that the following conditions are met:
|
11 |
+
#
|
12 |
+
# * Redistributions of source code must retain the above copyright notice, this
|
13 |
+
# list of conditions and the following disclaimer.
|
14 |
+
#
|
15 |
+
# * Redistributions in binary form must reproduce the above copyright notice,
|
16 |
+
# this list of conditions and the following disclaimer in the documentation
|
17 |
+
# and/or other materials provided with the distribution.
|
18 |
+
#
|
19 |
+
# * Neither the name of the copyright holder nor the names of its
|
20 |
+
# contributors may be used to endorse or promote products derived from
|
21 |
+
# this software without specific prior written permission.
|
22 |
+
#
|
23 |
+
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
24 |
+
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
25 |
+
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
26 |
+
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
27 |
+
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
28 |
+
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
29 |
+
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
30 |
+
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
31 |
+
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
32 |
+
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
33 |
+
|
34 |
+
from __future__ import annotations
|
35 |
+
|
36 |
+
import math
|
37 |
+
import copy
|
38 |
+
from typing import Any, Dict, Optional, Tuple
|
39 |
+
from dataclasses import dataclass, field
|
40 |
+
|
41 |
+
import torch
|
42 |
+
import torch.nn as nn
|
43 |
+
|
44 |
+
from einops import rearrange
|
45 |
+
from transformers.activations import ACT2FN
|
46 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
47 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
48 |
+
from .configuration_vitphi import MixFormerVLSequentialConfig
|
49 |
+
from .visual import VisionTransformer
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
@dataclass
|
54 |
+
class InferenceParams:
|
55 |
+
"""Inference parameters that are passed to the main model in order
|
56 |
+
to efficienly calculate and store the context during inference.
|
57 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
58 |
+
max_sequence_len: int
|
59 |
+
max_batch_size: int
|
60 |
+
sequence_len_offset: int = 0
|
61 |
+
batch_size_offset: int = 0
|
62 |
+
key_value_memory_dict: dict = field(default_factory=dict)
|
63 |
+
fused_ft_kernel: bool = False
|
64 |
+
lengths_per_sample: Optional[torch.Tensor] = None
|
65 |
+
|
66 |
+
|
67 |
+
class Embedding(nn.Module):
|
68 |
+
"""Token embedding with dropout."""
|
69 |
+
|
70 |
+
def __init__(self, config: PretrainedConfig) -> None:
|
71 |
+
super().__init__()
|
72 |
+
|
73 |
+
self.wte = nn.Embedding(config.vocab_size, config.n_embd)
|
74 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
75 |
+
|
76 |
+
def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
|
77 |
+
input_shape = input_ids.size()
|
78 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
79 |
+
|
80 |
+
hidden_states = self.wte(input_ids)
|
81 |
+
hidden_states = self.drop(hidden_states)
|
82 |
+
|
83 |
+
return hidden_states
|
84 |
+
|
85 |
+
|
86 |
+
class RotaryEmbedding(nn.Module):
|
87 |
+
"""PyTorch implementation of `flash-attn` RotaryEmbedding layer.
|
88 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
89 |
+
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
dim: int,
|
93 |
+
base: Optional[int] = 10000,
|
94 |
+
scale_base: Optional[float] = None,
|
95 |
+
device: Optional[str] = None,
|
96 |
+
**kwargs,
|
97 |
+
) -> None:
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
if scale_base is not None:
|
101 |
+
raise NotImplementedError
|
102 |
+
|
103 |
+
# Generate and save the inverse frequency buffer (non-trainable)
|
104 |
+
self.dim = dim
|
105 |
+
self.base = base
|
106 |
+
self.scale_base = scale_base
|
107 |
+
self.device = device
|
108 |
+
|
109 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim))
|
110 |
+
self.register_buffer("inv_freq", inv_freq)
|
111 |
+
|
112 |
+
scale = (
|
113 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
114 |
+
if scale_base is not None
|
115 |
+
else None
|
116 |
+
)
|
117 |
+
self.register_buffer("scale", scale)
|
118 |
+
|
119 |
+
self._seq_len_cached = 0
|
120 |
+
self._cos_cached = None
|
121 |
+
self._sin_cached = None
|
122 |
+
self._cos_k_cached = None
|
123 |
+
self._sin_k_cached = None
|
124 |
+
|
125 |
+
def _update_cos_sin_cache(self, x: torch.FloatTensor, seqlen_offset: Optional[int] = 0) -> None:
|
126 |
+
# Reset the tables if the sequence length has changed,
|
127 |
+
# or if we're on a new device (possibly due to tracing for instance)
|
128 |
+
seqlen = x.shape[1] + seqlen_offset
|
129 |
+
|
130 |
+
# Re-generate the inverse frequency buffer if it's not fp32
|
131 |
+
# (for instance if model.half() was called)
|
132 |
+
if self.inv_freq.dtype != "torch.float32":
|
133 |
+
self.inv_freq = 1.0 / (
|
134 |
+
self.base ** (torch.arange(0, self.dim, 2, device=self.device, dtype=torch.float32) / self.dim)
|
135 |
+
)
|
136 |
+
|
137 |
+
if seqlen > self._seq_len_cached or self._cos_cached.device != x.device or self._cos_cached.dtype != x.dtype:
|
138 |
+
self._seq_len_cached = seqlen
|
139 |
+
t = torch.arange(seqlen, device=x.device, dtype=torch.float32)
|
140 |
+
|
141 |
+
# Don't do einsum, it converts fp32 to fp16
|
142 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
143 |
+
freqs = torch.outer(t, self.inv_freq.to(device=t.device, dtype=torch.float32))
|
144 |
+
if self.scale is None:
|
145 |
+
self._cos_cached = torch.cos(freqs).to(x.dtype)
|
146 |
+
self._sin_cached = torch.sin(freqs).to(x.dtype)
|
147 |
+
else:
|
148 |
+
power = (
|
149 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
|
150 |
+
) / self.scale_base
|
151 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
152 |
+
|
153 |
+
# We want the multiplication by scale to happen in fp32
|
154 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(x.dtype)
|
155 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(x.dtype)
|
156 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(x.dtype)
|
157 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(x.dtype)
|
158 |
+
|
159 |
+
def apply_rotary_emb_qkv(
|
160 |
+
self,
|
161 |
+
qkv: torch.FloatTensor,
|
162 |
+
sin: torch.FloatTensor,
|
163 |
+
cos: torch.FloatTensor,
|
164 |
+
sin_k: Optional[torch.FloatTensor] = None,
|
165 |
+
cos_k: Optional[torch.FloatTensor] = None,
|
166 |
+
) -> torch.FloatTensor:
|
167 |
+
_, seqlen, three, _, headdim = qkv.shape
|
168 |
+
assert three == 3
|
169 |
+
|
170 |
+
rotary_seqlen, rotary_dim = cos.shape
|
171 |
+
rotary_dim *= 2
|
172 |
+
assert rotary_dim <= headdim
|
173 |
+
assert seqlen <= rotary_seqlen
|
174 |
+
|
175 |
+
cos_k = cos if cos_k is None else cos_k
|
176 |
+
sin_k = sin if sin_k is None else sin_k
|
177 |
+
assert sin.shape == cos_k.shape == sin_k.shape == (rotary_seqlen, rotary_dim // 2)
|
178 |
+
|
179 |
+
q_rot = qkv[:, :, 0, :, :rotary_dim]
|
180 |
+
q_pass = qkv[:, :, 0, :, rotary_dim:]
|
181 |
+
|
182 |
+
k_rot = qkv[:, :, 1, :, :rotary_dim]
|
183 |
+
k_pass = qkv[:, :, 1, :, rotary_dim:]
|
184 |
+
|
185 |
+
# Splits the queries and keys in half
|
186 |
+
q1, q2 = q_rot.chunk(2, dim=-1)
|
187 |
+
k1, k2 = k_rot.chunk(2, dim=-1)
|
188 |
+
c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
|
189 |
+
|
190 |
+
# Casts to fp32 are necessary to prevent fp16 overflow issues
|
191 |
+
q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
|
192 |
+
|
193 |
+
# Computes the new keys and queries, recasting to original dtype
|
194 |
+
q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
|
195 |
+
|
196 |
+
k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
|
197 |
+
|
198 |
+
return torch.cat(
|
199 |
+
[
|
200 |
+
torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
|
201 |
+
torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
|
202 |
+
qkv[:, :, 2:3, :, :],
|
203 |
+
],
|
204 |
+
axis=2,
|
205 |
+
)
|
206 |
+
|
207 |
+
def forward(self, qkv: torch.Tensor, seqlen_offset: int = 0) -> Tuple[torch.Tensor, torch.Tensor]:
|
208 |
+
"""Perform the forward pass.
|
209 |
+
Args:
|
210 |
+
qkv: Query, key and value tensors of shape (batch, seqlen, nheads, headdim) or (batch, seqlen, 3, nheads, headdim).
|
211 |
+
seqlen_offset: Used in generation where the passed `qkv` is only the last token in the batch.
|
212 |
+
Returns:
|
213 |
+
New `qkv` and the cached sinusoids.
|
214 |
+
"""
|
215 |
+
|
216 |
+
self._update_cos_sin_cache(qkv, seqlen_offset)
|
217 |
+
|
218 |
+
return self.apply_rotary_emb_qkv(qkv, self._sin_cached[seqlen_offset:], self._cos_cached[seqlen_offset:])
|
219 |
+
|
220 |
+
|
221 |
+
def _update_kv_cache(kv, inference_params, layer_idx):
|
222 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
223 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
224 |
+
# Pre-allocate memory for key-values for inference.
|
225 |
+
num_heads, head_dim = kv.shape[-2:]
|
226 |
+
if layer_idx not in inference_params.key_value_memory_dict:
|
227 |
+
kv_cache = torch.empty(
|
228 |
+
inference_params.max_batch_size, inference_params.max_sequence_len, 2,
|
229 |
+
num_heads, head_dim, dtype=kv.dtype, device=kv.device
|
230 |
+
)
|
231 |
+
inference_params.key_value_memory_dict[layer_idx] = kv_cache
|
232 |
+
else:
|
233 |
+
kv_cache = inference_params.key_value_memory_dict[layer_idx]
|
234 |
+
|
235 |
+
# Adjust key and value for inference
|
236 |
+
batch_start = inference_params.batch_size_offset
|
237 |
+
batch_end = batch_start + kv.shape[0]
|
238 |
+
sequence_start = inference_params.sequence_len_offset
|
239 |
+
sequence_end = sequence_start + kv.shape[1]
|
240 |
+
assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
|
241 |
+
assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
|
242 |
+
|
243 |
+
assert kv_cache is not None
|
244 |
+
kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
|
245 |
+
kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
|
246 |
+
return kv
|
247 |
+
|
248 |
+
|
249 |
+
class MLP(nn.Module):
|
250 |
+
"""Multi-Layer Perceptron.
|
251 |
+
Reference:
|
252 |
+
Attention Is All You Need.
|
253 |
+
https://arxiv.org/pdf/1706.03762.pdf.
|
254 |
+
"""
|
255 |
+
|
256 |
+
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None) -> None:
|
257 |
+
super().__init__()
|
258 |
+
|
259 |
+
act_fn = config.activation_function if act_fn is None else act_fn
|
260 |
+
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
261 |
+
|
262 |
+
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
263 |
+
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
264 |
+
|
265 |
+
self.fc1 = nn.Linear(config.n_embd, n_inner)
|
266 |
+
self.fc2 = nn.Linear(n_inner, config.n_embd)
|
267 |
+
self.act = ACT2FN[act_fn]
|
268 |
+
|
269 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
|
270 |
+
error_msgs):
|
271 |
+
old_keys = [prefix + "fc_in.weight", prefix + "fc_out.weight", prefix + "fc_in.bias", prefix + "fc_out.bias"]
|
272 |
+
new_keys = [prefix + "fc1.weight", prefix + "fc2.weight", prefix + "fc1.bias", prefix + "fc2.bias"]
|
273 |
+
|
274 |
+
if all(k in state_dict for k in old_keys) and not all(k in state_dict for k in new_keys):
|
275 |
+
# Older version of `MLP` saved with different key names.
|
276 |
+
for old_key, new_key in zip(old_keys, new_keys):
|
277 |
+
state_dict[new_key] = state_dict.pop(old_key)
|
278 |
+
|
279 |
+
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
|
280 |
+
error_msgs)
|
281 |
+
|
282 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
283 |
+
hidden_states = self.fc1(hidden_states)
|
284 |
+
hidden_states = self.act(hidden_states)
|
285 |
+
hidden_states = self.fc2(hidden_states)
|
286 |
+
|
287 |
+
return hidden_states
|
288 |
+
|
289 |
+
|
290 |
+
class FusedMLP(nn.Module):
|
291 |
+
"""Fused Multi-Layer Perceptron from `flash-attn`.
|
292 |
+
Reference:
|
293 |
+
https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/ops/fused_dense.py.
|
294 |
+
"""
|
295 |
+
|
296 |
+
def __init__(self, config: PretrainedConfig, n_inner: Optional[int] = None, act_fn: Optional[str] = None,
|
297 |
+
raise_on_missing: bool = False) -> None:
|
298 |
+
super().__init__()
|
299 |
+
|
300 |
+
act_fn = config.activation_function if act_fn is None else act_fn
|
301 |
+
assert act_fn in ACT2FN.keys(), f"`act_fn` must be one of: {ACT2FN.keys()}."
|
302 |
+
|
303 |
+
n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
|
304 |
+
n_inner = n_inner if n_inner is not None else 4 * config.n_embd
|
305 |
+
|
306 |
+
gelu_activations = ["gelu_new", "gelu_fast", "gelu_approx"]
|
307 |
+
activation = "gelu_approx" if act_fn in gelu_activations else "relu"
|
308 |
+
|
309 |
+
self.mlp = MLP(config, n_inner=n_inner, act_fn=act_fn)
|
310 |
+
|
311 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
312 |
+
return self.mlp(hidden_states)
|
313 |
+
|
314 |
+
|
315 |
+
class SelfAttention(nn.Module):
|
316 |
+
"""Implement the scaled dot product attention with softmax.
|
317 |
+
Adapted from https://github.com/Dao-AILab/flash-attention.
|
318 |
+
Arguments
|
319 |
+
---------
|
320 |
+
softmax_scale: The temperature to use for the softmax attention.
|
321 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
322 |
+
runtime)
|
323 |
+
attention_dropout: The dropout rate to apply to the attention
|
324 |
+
(default: 0.0)
|
325 |
+
"""
|
326 |
+
|
327 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
328 |
+
super().__init__()
|
329 |
+
self.causal = causal
|
330 |
+
self.softmax_scale = softmax_scale
|
331 |
+
self.drop = nn.Dropout(attention_dropout)
|
332 |
+
|
333 |
+
def forward(self, qkv, causal=None, key_padding_mask=None):
|
334 |
+
"""Implements the multihead softmax attention.
|
335 |
+
Arguments
|
336 |
+
---------
|
337 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
|
338 |
+
causal: if passed, will override self.causal
|
339 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
340 |
+
False means to mask out. (B, S)
|
341 |
+
"""
|
342 |
+
batch_size, seqlen = qkv.shape[0], qkv.shape[1]
|
343 |
+
causal = self.causal if causal is None else causal
|
344 |
+
q, k, v = qkv.unbind(dim=2)
|
345 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
346 |
+
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
347 |
+
if key_padding_mask is not None:
|
348 |
+
padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype,
|
349 |
+
device=scores.device)
|
350 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
351 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
352 |
+
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
|
353 |
+
if causal:
|
354 |
+
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
355 |
+
# So we have to construct the mask in float
|
356 |
+
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
|
357 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
358 |
+
scores = scores + causal_mask.to(dtype=scores.dtype)
|
359 |
+
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
360 |
+
attention_drop = self.drop(attention)
|
361 |
+
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
362 |
+
return output
|
363 |
+
|
364 |
+
|
365 |
+
class CrossAttention(nn.Module):
|
366 |
+
"""Implement the scaled dot product attention with softmax.
|
367 |
+
Adapted from https://github.com/Dao-AILab/flash-attention.
|
368 |
+
Arguments
|
369 |
+
---------
|
370 |
+
softmax_scale: The temperature to use for the softmax attention.
|
371 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
372 |
+
runtime)
|
373 |
+
attention_dropout: The dropout rate to apply to the attention
|
374 |
+
(default: 0.0)
|
375 |
+
"""
|
376 |
+
|
377 |
+
def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
|
378 |
+
super().__init__()
|
379 |
+
self.causal = causal
|
380 |
+
self.softmax_scale = softmax_scale
|
381 |
+
self.drop = nn.Dropout(attention_dropout)
|
382 |
+
|
383 |
+
def forward(self, q, kv, causal=None, key_padding_mask=None):
|
384 |
+
"""Implements the multihead softmax attention.
|
385 |
+
Arguments
|
386 |
+
---------
|
387 |
+
q: The tensor containing the query. (B, Sq, H, D)
|
388 |
+
kv: The tensor containing the key and value. (B, Sk, 2, H, D)
|
389 |
+
causal: if passed, will override self.causal
|
390 |
+
key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
|
391 |
+
False means to mask out. (B, Sk)
|
392 |
+
"""
|
393 |
+
batch_size, seqlen_q = q.shape[0], q.shape[1]
|
394 |
+
causal = self.causal if causal is None else causal
|
395 |
+
seqlen_k = kv.shape[1]
|
396 |
+
assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
|
397 |
+
k, v = kv.unbind(dim=2)
|
398 |
+
softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
|
399 |
+
scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
|
400 |
+
if key_padding_mask is not None:
|
401 |
+
padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype,
|
402 |
+
device=scores.device)
|
403 |
+
padding_mask.masked_fill_(key_padding_mask, 0.0)
|
404 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
405 |
+
scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
|
406 |
+
if causal:
|
407 |
+
# "triu_tril_cuda_template" not implemented for 'BFloat16'
|
408 |
+
# So we have to construct the mask in float
|
409 |
+
causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
|
410 |
+
device=scores.device), 1)
|
411 |
+
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
|
412 |
+
scores = scores + causal_mask.to(dtype=scores.dtype)
|
413 |
+
attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
|
414 |
+
attention_drop = self.drop(attention)
|
415 |
+
output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
|
416 |
+
return output
|
417 |
+
|
418 |
+
|
419 |
+
def find_mha_dims(
|
420 |
+
config: PretrainedConfig, n_head: Optional[int] = None, head_dim: Optional[int] = None
|
421 |
+
) -> Tuple[int, int]:
|
422 |
+
"""Validate and return the number of heads and head dimension for multi-head attention.
|
423 |
+
Args:
|
424 |
+
config: Model configuration.
|
425 |
+
n_head: Number of heads.
|
426 |
+
head_dim: Head dimension.
|
427 |
+
Returns:
|
428 |
+
Number of heads and head dimension.
|
429 |
+
"""
|
430 |
+
|
431 |
+
assert all(
|
432 |
+
hasattr(config, attr) for attr in ["n_embd", "n_head"]
|
433 |
+
), "`config` must have `n_embd` and `n_head` attributes."
|
434 |
+
|
435 |
+
if head_dim is None:
|
436 |
+
assert (
|
437 |
+
config.n_embd % config.n_head == 0
|
438 |
+
), f"Hidden size ({config.n_embd}) must be divisible by the number of heads ({config.n_head})."
|
439 |
+
|
440 |
+
if n_head is None and head_dim is None:
|
441 |
+
head_dim = config.n_embd // config.n_head
|
442 |
+
n_head = config.n_head
|
443 |
+
elif n_head is None or head_dim is None:
|
444 |
+
raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
|
445 |
+
|
446 |
+
return n_head, head_dim
|
447 |
+
|
448 |
+
|
449 |
+
class MHA(nn.Module):
|
450 |
+
"""Multi-head attention layer.
|
451 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
452 |
+
|
453 |
+
def __init__(
|
454 |
+
self,
|
455 |
+
config: PretrainedConfig,
|
456 |
+
rotary_dim: Optional[int] = None,
|
457 |
+
n_head: Optional[int] = None,
|
458 |
+
head_dim: Optional[int] = None,
|
459 |
+
bias: Optional[bool] = True,
|
460 |
+
dropout: Optional[float] = 0.0,
|
461 |
+
softmax_scale: Optional[float] = None,
|
462 |
+
causal: Optional[bool] = True,
|
463 |
+
layer_idx: Optional[int] = None,
|
464 |
+
rotary_emb_scale_base: Optional[float] = None,
|
465 |
+
return_residual: Optional[bool] = False,
|
466 |
+
checkpointing: Optional[bool] = False,
|
467 |
+
device: Optional[str] = None,
|
468 |
+
dtype: Optional[torch.dtype] = None,
|
469 |
+
fused_dense: Optional[bool] = True,
|
470 |
+
flash_attn: Optional[bool] = True,
|
471 |
+
cutlass_attn: Optional[bool] = False,
|
472 |
+
flash_rotary: Optional[bool] = True,
|
473 |
+
raise_on_missing: Optional[bool] = False
|
474 |
+
) -> None:
|
475 |
+
super().__init__()
|
476 |
+
|
477 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
478 |
+
n_head, head_dim = find_mha_dims(config, n_head, head_dim)
|
479 |
+
|
480 |
+
self.hidden_size = config.n_embd
|
481 |
+
self.n_head = n_head
|
482 |
+
self.head_dim = head_dim
|
483 |
+
self.op_size = n_head * head_dim
|
484 |
+
|
485 |
+
self.causal = causal
|
486 |
+
self.layer_idx = layer_idx
|
487 |
+
self.rotary_emb_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
|
488 |
+
self.fused_dense = fused_dense
|
489 |
+
self.flash_attn = flash_attn
|
490 |
+
self.cutlass_attn = cutlass_attn
|
491 |
+
self.flash_rotary = flash_rotary
|
492 |
+
self.return_residual = return_residual
|
493 |
+
self.checkpointing = checkpointing
|
494 |
+
|
495 |
+
if self.rotary_emb_dim > 0:
|
496 |
+
rotary_kwargs = {"device": device}
|
497 |
+
if rotary_emb_scale_base is not None and rotary_emb_scale_base > 0.0:
|
498 |
+
rotary_kwargs["scale_base"] = rotary_emb_scale_base
|
499 |
+
|
500 |
+
self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, **rotary_kwargs)
|
501 |
+
else:
|
502 |
+
pass
|
503 |
+
|
504 |
+
self.Wqkv = nn.Linear(self.hidden_size, 3 * self.op_size, bias=bias, **factory_kwargs)
|
505 |
+
self.out_proj = nn.Linear(self.op_size, self.hidden_size, bias=bias, **factory_kwargs)
|
506 |
+
|
507 |
+
self.inner_attn = SelfAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
508 |
+
self.inner_cross_attn = CrossAttention(causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout)
|
509 |
+
|
510 |
+
def _update_kv_cache(self, kv: torch.FloatTensor, inference_params: InferenceParams) -> None:
|
511 |
+
"""kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
|
512 |
+
Adapted from https://github.com/Dao-AILab/flash-attention."""
|
513 |
+
|
514 |
+
assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
|
515 |
+
|
516 |
+
return _update_kv_cache(kv, inference_params, self.layer_idx)
|
517 |
+
|
518 |
+
def forward(
|
519 |
+
self,
|
520 |
+
x: torch.FloatTensor,
|
521 |
+
x_kv: Optional[torch.FloatTensor] = None,
|
522 |
+
key_padding_mask: Optional[torch.BoolTensor] = None,
|
523 |
+
cu_seqlens: Optional[torch.LongTensor] = None,
|
524 |
+
max_seqlen: Optional[int] = None,
|
525 |
+
mixer_subset: Optional[torch.LongTensor] = None,
|
526 |
+
past_cache: Optional[InferenceParams] = None,
|
527 |
+
**kwargs
|
528 |
+
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
529 |
+
"""Perform the forward pass.
|
530 |
+
Args:
|
531 |
+
x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
|
532 |
+
cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
|
533 |
+
is the is the sum of the sequence lengths in the batch.
|
534 |
+
x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
|
535 |
+
key_padding_mask: boolean mask, True means to keep, False means to mask out.
|
536 |
+
(batch, seqlen). Only applicable when not using FlashAttention.
|
537 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
538 |
+
of the sequences in the batch, used to index into x. Only applicable when using
|
539 |
+
FlashAttention.
|
540 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
541 |
+
mixer_subset: for cross-attention only. If not None, will take a subset of x
|
542 |
+
before applying the query projection. Useful for e.g., ViT where we only care
|
543 |
+
about the CLS token in the last layer.
|
544 |
+
past_cache: For generation only.
|
545 |
+
Returns:
|
546 |
+
(batch, seqlen, hidden_dim) if cu_seqlens is None and max_seqlen is None,
|
547 |
+
else (total, hidden_dim) where total is the is the sum of the sequence lengths
|
548 |
+
in the batch.
|
549 |
+
"""
|
550 |
+
|
551 |
+
if cu_seqlens is not None:
|
552 |
+
assert max_seqlen is not None
|
553 |
+
assert key_padding_mask is None
|
554 |
+
assert self.flash_attn
|
555 |
+
assert self.rotary_emb_dim == 0
|
556 |
+
|
557 |
+
if key_padding_mask is not None:
|
558 |
+
assert cu_seqlens is None
|
559 |
+
assert max_seqlen is None
|
560 |
+
assert not self.flash_attn
|
561 |
+
|
562 |
+
if past_cache is not None:
|
563 |
+
assert key_padding_mask is None
|
564 |
+
assert cu_seqlens is None and max_seqlen is None
|
565 |
+
|
566 |
+
attn_kwargs = {"key_padding_mask": key_padding_mask}
|
567 |
+
|
568 |
+
assert x_kv is None and mixer_subset is None
|
569 |
+
|
570 |
+
qkv = self.Wqkv(x)
|
571 |
+
qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
|
572 |
+
|
573 |
+
if past_cache is None:
|
574 |
+
if self.rotary_emb_dim > 0:
|
575 |
+
qkv = self.rotary_emb(qkv)
|
576 |
+
context = self.inner_attn(qkv, **attn_kwargs)
|
577 |
+
|
578 |
+
else:
|
579 |
+
if self.rotary_emb_dim > 0:
|
580 |
+
qkv = self.rotary_emb(qkv, seqlen_offset=past_cache.sequence_len_offset)
|
581 |
+
q = qkv[:, :, 0]
|
582 |
+
kv = self._update_kv_cache(qkv[:, :, 1:], past_cache)
|
583 |
+
# If we're processing the prompt, causal=None (use self.causal).
|
584 |
+
# If we're decoding, then causal=False.
|
585 |
+
causal = None if past_cache.sequence_len_offset == 0 else False
|
586 |
+
context = self.inner_cross_attn(q, kv, causal=causal)
|
587 |
+
|
588 |
+
out = rearrange(context, "... h d -> ... (h d)")
|
589 |
+
out = self.out_proj(out)
|
590 |
+
|
591 |
+
return out if not self.return_residual else (out, x)
|
592 |
+
|
593 |
+
|
594 |
+
class ParallelBlock(nn.Module):
|
595 |
+
"""Parallel block.
|
596 |
+
This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
|
597 |
+
"""
|
598 |
+
|
599 |
+
def __init__(
|
600 |
+
self,
|
601 |
+
config: PretrainedConfig,
|
602 |
+
mixer: Optional[Dict[str, Any]] = None,
|
603 |
+
mlp: Optional[Dict[str, Any]] = None,
|
604 |
+
block_idx: Optional[int] = None,
|
605 |
+
) -> None:
|
606 |
+
super().__init__()
|
607 |
+
|
608 |
+
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
609 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
610 |
+
self.block_idx = block_idx
|
611 |
+
|
612 |
+
self.mixer = MHA(config=config, **mixer, layer_idx=block_idx)
|
613 |
+
mlp_cls = mlp.pop('mlp_cls')
|
614 |
+
if mlp_cls == 'fused_mlp':
|
615 |
+
self.mlp = FusedMLP(config=config, **mlp)
|
616 |
+
else:
|
617 |
+
self.mlp = MLP(config=config, **mlp)
|
618 |
+
|
619 |
+
def forward(self, hidden_states: torch.FloatTensor,
|
620 |
+
past_cache: Optional[torch.FloatTensor] = None) -> torch.FloatTensor:
|
621 |
+
residual = hidden_states
|
622 |
+
hidden_states = self.ln(hidden_states)
|
623 |
+
|
624 |
+
attn_outputs = self.mixer(hidden_states, past_cache=past_cache)
|
625 |
+
if isinstance(attn_outputs, tuple):
|
626 |
+
attn_outputs = attn_outputs[0]
|
627 |
+
|
628 |
+
attn_outputs = self.resid_dropout(attn_outputs)
|
629 |
+
feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
|
630 |
+
|
631 |
+
hidden_states = attn_outputs + feed_forward_hidden_states + residual
|
632 |
+
|
633 |
+
return hidden_states
|
634 |
+
|
635 |
+
|
636 |
+
class CausalLMHead(nn.Module):
|
637 |
+
"""Causal Language Modeling head.
|
638 |
+
Reference:
|
639 |
+
Improving Language Understanding by Generative Pre-Training.
|
640 |
+
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
641 |
+
"""
|
642 |
+
|
643 |
+
def __init__(self, config: PretrainedConfig) -> None:
|
644 |
+
super().__init__()
|
645 |
+
|
646 |
+
self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
647 |
+
self.linear = nn.Linear(config.n_embd, config.vocab_size)
|
648 |
+
|
649 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
650 |
+
hidden_states = self.ln(hidden_states)
|
651 |
+
logits = self.linear(hidden_states).to(torch.float32)
|
652 |
+
|
653 |
+
return logits
|
654 |
+
|
655 |
+
|
656 |
+
class CausalLMLoss(nn.Module):
|
657 |
+
"""Causal Language Modeling loss.
|
658 |
+
Reference:
|
659 |
+
Improving Language Understanding by Generative Pre-Training.
|
660 |
+
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
|
661 |
+
"""
|
662 |
+
|
663 |
+
def __init__(self, shift_labels: Optional[bool] = True) -> None:
|
664 |
+
super().__init__()
|
665 |
+
|
666 |
+
self.shift_labels = shift_labels
|
667 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
668 |
+
|
669 |
+
def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
|
670 |
+
if self.shift_labels:
|
671 |
+
logits = logits[..., :-1, :].contiguous()
|
672 |
+
labels = labels[..., 1:].contiguous()
|
673 |
+
|
674 |
+
loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
|
675 |
+
|
676 |
+
return loss
|
677 |
+
|
678 |
+
|
679 |
+
class MixFormerSequentialPreTrainedModel(PreTrainedModel):
|
680 |
+
"""MixFormer (sequential for DeepSpeed) pre-trained model."""
|
681 |
+
|
682 |
+
config_class = MixFormerVLSequentialConfig
|
683 |
+
base_model_prefix = "transformer"
|
684 |
+
supports_gradient_checkpointing = True
|
685 |
+
|
686 |
+
def __init__(self, *inputs, **kwargs) -> None:
|
687 |
+
super().__init__(*inputs, **kwargs)
|
688 |
+
|
689 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs) -> Dict[str, Any]:
|
690 |
+
if "use_cache" in kwargs and not kwargs["use_cache"]:
|
691 |
+
return {"input_ids": input_ids}
|
692 |
+
|
693 |
+
if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
|
694 |
+
past_key_values = InferenceParams(
|
695 |
+
max_batch_size=input_ids.shape[0],
|
696 |
+
max_sequence_len=self.config.n_positions,
|
697 |
+
sequence_len_offset=0,
|
698 |
+
batch_size_offset=0,
|
699 |
+
fused_ft_kernel=False,
|
700 |
+
key_value_memory_dict={},
|
701 |
+
)
|
702 |
+
else:
|
703 |
+
# assume past_key_values has cached all but last token in input_ids
|
704 |
+
past_key_values.sequence_len_offset = len(input_ids[0]) - 1
|
705 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
706 |
+
|
707 |
+
return {"input_ids": input_ids, "past_key_values": past_key_values, **kwargs}
|
708 |
+
|
709 |
+
|
710 |
+
class MixFormerVLSequentialForCausalLM(MixFormerSequentialPreTrainedModel):
|
711 |
+
"""MixFormer (sequential for DeepSpeed) for Causal Language Modeling."""
|
712 |
+
|
713 |
+
_keys_to_ignore_on_load_missing = [""]
|
714 |
+
_keys_to_ignore_on_load_unexpected = [r"layers\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
|
715 |
+
_no_split_modules = ["ParallelBlock"]
|
716 |
+
|
717 |
+
def __init__(self, config: MixFormerVLSequentialConfig) -> None:
|
718 |
+
super().__init__(config)
|
719 |
+
|
720 |
+
modules = [Embedding(config)]
|
721 |
+
block_config = config.architecture
|
722 |
+
|
723 |
+
if not isinstance(block_config, list):
|
724 |
+
block_config = [block_config for _ in range(config.n_layer)]
|
725 |
+
|
726 |
+
if config.n_layer != len(block_config):
|
727 |
+
config.n_layer = len(block_config)
|
728 |
+
|
729 |
+
for block_idx, block in enumerate(block_config):
|
730 |
+
# `block_cls` with `legacy` value is for backward compatibility
|
731 |
+
# `path` key is for backward compatibility
|
732 |
+
block = copy.deepcopy(block) or {"block_cls": "parallel"}
|
733 |
+
block_cls = block.pop("path", None) or block.pop("block_cls", None)
|
734 |
+
|
735 |
+
block["block_idx"] = block_idx
|
736 |
+
modules.append(ParallelBlock(config, **block))
|
737 |
+
|
738 |
+
modules.append(CausalLMHead(config))
|
739 |
+
|
740 |
+
self.layers = nn.Sequential(*modules)
|
741 |
+
self.loss = CausalLMLoss()
|
742 |
+
self.visual = VisionTransformer(**config.visual)
|
743 |
+
self.switcher = nn.Linear(config.visual.output_dim, config.n_embd, bias=False)
|
744 |
+
|
745 |
+
self.post_init()
|
746 |
+
|
747 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
748 |
+
return self.layers[0].wte
|
749 |
+
|
750 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
751 |
+
self.layers[0].wte = new_embeddings
|
752 |
+
|
753 |
+
def get_output_embeddings(self) -> nn.Linear:
|
754 |
+
return self.layers[-1].linear
|
755 |
+
|
756 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
757 |
+
self.layers[-1].linear = new_embeddings
|
758 |
+
|
759 |
+
def forward(
|
760 |
+
self, input_ids: torch.LongTensor, labels: Optional[torch.LongTensor] = None,
|
761 |
+
past_key_values: Optional[torch.FloatTensor] = None, **kwargs
|
762 |
+
) -> CausalLMOutputWithPast:
|
763 |
+
if past_key_values is None and input_ids is not None \
|
764 |
+
and torch.any(input_ids == self.config.visual['image_start_id']):
|
765 |
+
bos_pos = torch.where(input_ids == self.config.visual['image_start_id'])
|
766 |
+
eos_pos = torch.where(input_ids == self.config.visual['image_start_id'] + 1) # image_end_id = image_start_id + 1
|
767 |
+
assert (bos_pos[0] == eos_pos[0]).all() # 断言batch中的每个样本都有图片的起始和终止符
|
768 |
+
img_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1)
|
769 |
+
images = []
|
770 |
+
for i, a, b in img_pos:
|
771 |
+
image = input_ids[i][a+1: b-1].tolist()
|
772 |
+
image = image[ : image.index(self.config.visual['image_start_id'] + 2)] # image_pad_id = image_start_id + 2
|
773 |
+
images.append(bytes(image).decode('utf-8'))
|
774 |
+
|
775 |
+
images = self.visual.encode(images)
|
776 |
+
assert images.shape[0] == len(images)
|
777 |
+
else:
|
778 |
+
images = None
|
779 |
+
|
780 |
+
hidden_states = self.layers[0](input_ids)
|
781 |
+
if images is not None:
|
782 |
+
for idx, (i, a, b) in enumerate(img_pos):
|
783 |
+
hidden_states[i][a + 1: b] = self.switcher(images[idx])
|
784 |
+
if not past_key_values:
|
785 |
+
for module in self.layers[1:-1]:
|
786 |
+
hidden_states = module(hidden_states)
|
787 |
+
else:
|
788 |
+
for module in self.layers[1:-1]:
|
789 |
+
hidden_states = module(hidden_states, past_cache=past_key_values)
|
790 |
+
lm_logits = self.layers[-1](hidden_states)
|
791 |
+
|
792 |
+
loss = None
|
793 |
+
if labels is not None:
|
794 |
+
loss = self.loss(lm_logits, labels)
|
795 |
+
|
796 |
+
return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
|
tokenization_vitphi.py
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import requests
|
12 |
+
import unicodedata
|
13 |
+
from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable, Optional
|
14 |
+
|
15 |
+
import tiktoken
|
16 |
+
import numpy as np
|
17 |
+
from PIL import Image
|
18 |
+
from PIL import ImageFont
|
19 |
+
from PIL import ImageDraw
|
20 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
21 |
+
from transformers.utils import try_to_load_from_cache
|
22 |
+
|
23 |
+
import matplotlib.colors as mcolors
|
24 |
+
from matplotlib.font_manager import FontProperties
|
25 |
+
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.tiktoken", "ttf": "SimSun.ttf"}
|
29 |
+
# FONT_PATH = try_to_load_from_cache("Qwen/Qwen-VL-Chat", "SimSun.ttf")
|
30 |
+
FONT_PATH = None
|
31 |
+
if FONT_PATH is None:
|
32 |
+
if not os.path.exists("SimSun.ttf"):
|
33 |
+
ttf = requests.get("https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/SimSun.ttf")
|
34 |
+
open("SimSun.ttf", "wb").write(ttf.content)
|
35 |
+
FONT_PATH = "SimSun.ttf"
|
36 |
+
|
37 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
38 |
+
ENDOFTEXT = "<|endoftext|>"
|
39 |
+
# <|endoftext|> 50256
|
40 |
+
IMSTART = "<|im_start|>"
|
41 |
+
IMEND = "<|im_end|>"
|
42 |
+
# as the default behavior is changed to allow special tokens in
|
43 |
+
# regular texts, the surface forms of special tokens need to be
|
44 |
+
# as different as possible to minimize the impact
|
45 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
46 |
+
SPECIAL_TOKENS = (
|
47 |
+
# ENDOFTEXT,
|
48 |
+
IMSTART,
|
49 |
+
IMEND,
|
50 |
+
) + EXTRAS
|
51 |
+
IMG_TOKEN_SPAN = 256
|
52 |
+
|
53 |
+
|
54 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
55 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
56 |
+
contents = f.read()
|
57 |
+
return {
|
58 |
+
base64.b64decode(token): int(rank)
|
59 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
60 |
+
}
|
61 |
+
|
62 |
+
|
63 |
+
def _list_find(
|
64 |
+
input_list: List[Any],
|
65 |
+
candidates: Tuple[Any],
|
66 |
+
start: int = 0,
|
67 |
+
):
|
68 |
+
for i in range(start, len(input_list)):
|
69 |
+
if input_list[i] in candidates:
|
70 |
+
return i
|
71 |
+
return -1
|
72 |
+
|
73 |
+
|
74 |
+
def _replace_closed_tag(
|
75 |
+
input_tokens: List[Any],
|
76 |
+
start_tags: Union[Any, Tuple[Any]],
|
77 |
+
end_tags: Union[Any, Tuple[Any]],
|
78 |
+
inclusive_replace_func: Callable,
|
79 |
+
exclusive_replace_func: Callable = lambda x: x,
|
80 |
+
):
|
81 |
+
if isinstance(start_tags, (str, int)):
|
82 |
+
start_tags = (start_tags,)
|
83 |
+
if isinstance(end_tags, (str, int)):
|
84 |
+
end_tags = (end_tags,)
|
85 |
+
assert len(start_tags) == len(end_tags)
|
86 |
+
|
87 |
+
output_tokens = []
|
88 |
+
end = 0
|
89 |
+
while True:
|
90 |
+
start = _list_find(input_tokens, start_tags, end)
|
91 |
+
if start == -1:
|
92 |
+
break
|
93 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end: start]))
|
94 |
+
tag_idx = start_tags.index(input_tokens[start])
|
95 |
+
end = _list_find(input_tokens, (end_tags[tag_idx],), start)
|
96 |
+
if end == -1:
|
97 |
+
raise ValueError("Unclosed image token")
|
98 |
+
output_tokens.extend(inclusive_replace_func(input_tokens[start: end + 1]))
|
99 |
+
end += 1
|
100 |
+
output_tokens.extend(exclusive_replace_func(input_tokens[end:]))
|
101 |
+
return output_tokens
|
102 |
+
|
103 |
+
|
104 |
+
class VitPhiTokenizer(PreTrainedTokenizer):
|
105 |
+
"""VitPhi tokenizer."""
|
106 |
+
|
107 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
vocab_file,
|
112 |
+
errors="replace",
|
113 |
+
image_start_tag='<img>',
|
114 |
+
image_end_tag='</img>',
|
115 |
+
image_pad_tag='<imgpad>',
|
116 |
+
ref_start_tag='<ref>',
|
117 |
+
ref_end_tag='</ref>',
|
118 |
+
box_start_tag='<box>',
|
119 |
+
box_end_tag='</box>',
|
120 |
+
quad_start_tag='<quad>',
|
121 |
+
quad_end_tag='</quad>',
|
122 |
+
**kwargs,
|
123 |
+
):
|
124 |
+
super().__init__(**kwargs)
|
125 |
+
self.image_start_tag = image_start_tag
|
126 |
+
self.image_end_tag = image_end_tag
|
127 |
+
self.image_pad_tag = image_pad_tag
|
128 |
+
self.ref_start_tag = ref_start_tag
|
129 |
+
self.ref_end_tag = ref_end_tag
|
130 |
+
self.box_start_tag = box_start_tag
|
131 |
+
self.box_end_tag = box_end_tag
|
132 |
+
self.quad_start_tag = quad_start_tag
|
133 |
+
self.quad_end_tag = quad_end_tag
|
134 |
+
self.IMAGE_ST = (
|
135 |
+
ref_start_tag, ref_end_tag,
|
136 |
+
box_start_tag, box_end_tag,
|
137 |
+
quad_start_tag, quad_end_tag,
|
138 |
+
image_start_tag, image_end_tag,
|
139 |
+
image_pad_tag
|
140 |
+
)
|
141 |
+
|
142 |
+
self.errors = errors # how to handle errors in decoding
|
143 |
+
|
144 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
|
145 |
+
self.special_tokens = {
|
146 |
+
token: index
|
147 |
+
for index, token in enumerate(
|
148 |
+
SPECIAL_TOKENS + self.IMAGE_ST, start=len(self.mergeable_ranks)
|
149 |
+
)
|
150 |
+
}
|
151 |
+
self.img_start_id = self.special_tokens[self.image_start_tag]
|
152 |
+
self.img_end_id = self.special_tokens[self.image_end_tag]
|
153 |
+
self.img_pad_id = self.special_tokens[self.image_pad_tag]
|
154 |
+
self.ref_start_id = self.special_tokens[self.ref_start_tag]
|
155 |
+
self.ref_end_id = self.special_tokens[self.ref_end_tag]
|
156 |
+
self.box_start_id = self.special_tokens[self.box_start_tag]
|
157 |
+
self.box_end_id = self.special_tokens[self.box_end_tag]
|
158 |
+
self.quad_start_id = self.special_tokens[self.quad_start_tag]
|
159 |
+
self.quad_end_id = self.special_tokens[self.quad_end_tag]
|
160 |
+
|
161 |
+
enc = tiktoken.Encoding(
|
162 |
+
"VitPhi",
|
163 |
+
pat_str=PAT_STR,
|
164 |
+
mergeable_ranks=self.mergeable_ranks,
|
165 |
+
special_tokens=self.special_tokens,
|
166 |
+
)
|
167 |
+
assert (
|
168 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
169 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
170 |
+
|
171 |
+
self.decoder = {
|
172 |
+
v: k for k, v in self.mergeable_ranks.items()
|
173 |
+
} # type: dict[int, bytes|str]
|
174 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
175 |
+
|
176 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
177 |
+
|
178 |
+
self.eod_id = self.tokenizer.eot_token
|
179 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
180 |
+
self.im_end_id = self.special_tokens[IMEND]
|
181 |
+
|
182 |
+
def __len__(self) -> int:
|
183 |
+
return self.tokenizer.n_vocab
|
184 |
+
|
185 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
186 |
+
return self.mergeable_ranks
|
187 |
+
|
188 |
+
def convert_tokens_to_ids(
|
189 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
190 |
+
) -> List[int]:
|
191 |
+
ids = []
|
192 |
+
if isinstance(tokens, (str, bytes)):
|
193 |
+
if tokens in self.special_tokens:
|
194 |
+
return self.special_tokens[tokens]
|
195 |
+
else:
|
196 |
+
return self.mergeable_ranks.get(tokens)
|
197 |
+
for token in tokens:
|
198 |
+
if token in self.special_tokens:
|
199 |
+
ids.append(self.special_tokens[token])
|
200 |
+
else:
|
201 |
+
ids.append(self.mergeable_ranks.get(token))
|
202 |
+
return ids
|
203 |
+
|
204 |
+
def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
|
205 |
+
if not special_tokens and new_tokens:
|
206 |
+
raise ValueError('Adding regular tokens is not supported')
|
207 |
+
for token in new_tokens:
|
208 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
209 |
+
if surface_form not in SPECIAL_TOKENS + self.IMAGE_ST:
|
210 |
+
raise ValueError('Adding unknown special tokens is not supported')
|
211 |
+
return 0
|
212 |
+
|
213 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
214 |
+
"""
|
215 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
216 |
+
|
217 |
+
Returns:
|
218 |
+
`Tuple(str)`: Paths to the files saved.
|
219 |
+
"""
|
220 |
+
file_path = os.path.join(save_directory, "vocab.tiktoken")
|
221 |
+
with open(file_path, "w", encoding="utf8") as w:
|
222 |
+
for k, v in self.mergeable_ranks.items():
|
223 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
224 |
+
w.write(line)
|
225 |
+
return (file_path,)
|
226 |
+
|
227 |
+
def tokenize(
|
228 |
+
self,
|
229 |
+
text: str,
|
230 |
+
allowed_special: Union[Set, str] = "all",
|
231 |
+
disallowed_special: Union[Collection, str] = (),
|
232 |
+
**kwargs,
|
233 |
+
) -> List[Union[bytes, str]]:
|
234 |
+
"""
|
235 |
+
Converts a string in a sequence of tokens.
|
236 |
+
|
237 |
+
Args:
|
238 |
+
text (`str`):
|
239 |
+
The sequence to be encoded.
|
240 |
+
allowed_special (`Literal["all"]` or `set`):
|
241 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
242 |
+
Default to "all".
|
243 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
244 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
245 |
+
Default to an empty tuple.
|
246 |
+
|
247 |
+
kwargs (additional keyword arguments, *optional*):
|
248 |
+
Will be passed to the underlying model specific encode method.
|
249 |
+
|
250 |
+
Returns:
|
251 |
+
`List[bytes|str]`: The list of tokens.
|
252 |
+
"""
|
253 |
+
tokens = []
|
254 |
+
text = unicodedata.normalize("NFC", text)
|
255 |
+
|
256 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
257 |
+
for t in self.tokenizer.encode(
|
258 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
259 |
+
):
|
260 |
+
tokens.append(self.decoder[t])
|
261 |
+
|
262 |
+
def _encode_imgurl(img_tokens):
|
263 |
+
assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
|
264 |
+
img_tokens = img_tokens[1:-1]
|
265 |
+
img_url = b''.join(img_tokens)
|
266 |
+
out_img_tokens = list(map(self.decoder.get, img_url))
|
267 |
+
if len(out_img_tokens) > IMG_TOKEN_SPAN:
|
268 |
+
raise ValueError("The content in {}..{} is too long".format(
|
269 |
+
self.image_start_tag, self.image_end_tag))
|
270 |
+
out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
|
271 |
+
out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
|
272 |
+
return out_img_tokens
|
273 |
+
|
274 |
+
return _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
|
275 |
+
|
276 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
277 |
+
"""
|
278 |
+
Converts a sequence of tokens in a single string.
|
279 |
+
"""
|
280 |
+
text = ""
|
281 |
+
temp = b""
|
282 |
+
for t in tokens:
|
283 |
+
if isinstance(t, str):
|
284 |
+
if temp:
|
285 |
+
text += temp.decode("utf-8", errors=self.errors)
|
286 |
+
temp = b""
|
287 |
+
text += t
|
288 |
+
elif isinstance(t, bytes):
|
289 |
+
temp += t
|
290 |
+
else:
|
291 |
+
raise TypeError("token should only be of type types or str")
|
292 |
+
if temp:
|
293 |
+
text += temp.decode("utf-8", errors=self.errors)
|
294 |
+
return text
|
295 |
+
|
296 |
+
@property
|
297 |
+
def vocab_size(self):
|
298 |
+
return self.tokenizer.n_vocab
|
299 |
+
|
300 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
301 |
+
"""Converts an id to a token, special tokens included"""
|
302 |
+
if index in self.decoder:
|
303 |
+
return self.decoder[index]
|
304 |
+
raise ValueError("unknown ids")
|
305 |
+
|
306 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
307 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
308 |
+
if token in self.special_tokens:
|
309 |
+
return self.special_tokens[token]
|
310 |
+
if token in self.mergeable_ranks:
|
311 |
+
return self.mergeable_ranks[token]
|
312 |
+
raise ValueError("unknown token")
|
313 |
+
|
314 |
+
def _tokenize(self, text: str, **kwargs):
|
315 |
+
"""
|
316 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
317 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
318 |
+
|
319 |
+
Do NOT take care of added tokens.
|
320 |
+
"""
|
321 |
+
raise NotImplementedError
|
322 |
+
|
323 |
+
def _decode(
|
324 |
+
self,
|
325 |
+
token_ids: Union[int, List[int]],
|
326 |
+
skip_special_tokens: bool = False,
|
327 |
+
errors: str = None,
|
328 |
+
**kwargs,
|
329 |
+
) -> str:
|
330 |
+
if isinstance(token_ids, int):
|
331 |
+
token_ids = [token_ids]
|
332 |
+
|
333 |
+
def _decode_imgurl(img_token_ids):
|
334 |
+
assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
|
335 |
+
img_token_ids = img_token_ids[1:-1]
|
336 |
+
img_token_ids = img_token_ids[: img_token_ids.index(self.img_pad_id)]
|
337 |
+
img_url = bytes(img_token_ids).decode('utf-8')
|
338 |
+
return [self.img_start_id] + self.tokenizer.encode(img_url) + [self.img_end_id]
|
339 |
+
|
340 |
+
token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
|
341 |
+
|
342 |
+
if skip_special_tokens:
|
343 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
344 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
345 |
+
|
346 |
+
def to_list_format(self, text: str):
|
347 |
+
text = unicodedata.normalize("NFC", text)
|
348 |
+
token_ids = self.tokenizer.encode(
|
349 |
+
text, allowed_special=set(self.IMAGE_ST + (ENDOFTEXT,)))
|
350 |
+
|
351 |
+
def _encode_vl_info(tokens):
|
352 |
+
if len(tokens) == 0:
|
353 |
+
return []
|
354 |
+
if tokens[0] == self.img_start_id and tokens[-1] == self.img_end_id:
|
355 |
+
key = 'image'
|
356 |
+
elif tokens[0] == self.ref_start_id and tokens[-1] == self.ref_end_id:
|
357 |
+
key = 'ref'
|
358 |
+
elif tokens[0] == self.box_start_id and tokens[-1] == self.box_end_id:
|
359 |
+
key = 'box'
|
360 |
+
elif tokens[0] == self.quad_start_id and tokens[-1] == self.quad_end_id:
|
361 |
+
key = 'quad'
|
362 |
+
else:
|
363 |
+
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
|
364 |
+
return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
|
365 |
+
_tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
|
366 |
+
val = b''.join(map(_tobytes, map(self.decoder.get, tokens[1:-1]))).decode('utf-8')
|
367 |
+
return [{key: val}]
|
368 |
+
|
369 |
+
return _replace_closed_tag(
|
370 |
+
token_ids,
|
371 |
+
(self.img_start_id, self.ref_start_id, self.box_start_id, self.quad_start_id),
|
372 |
+
(self.img_end_id, self.ref_end_id, self.box_end_id, self.quad_end_id),
|
373 |
+
_encode_vl_info,
|
374 |
+
_encode_vl_info,
|
375 |
+
)
|
376 |
+
|
377 |
+
def from_list_format(self, list_format: List[Dict]):
|
378 |
+
text = ''
|
379 |
+
num_images = 0
|
380 |
+
for ele in list_format:
|
381 |
+
if 'image' in ele:
|
382 |
+
num_images += 1
|
383 |
+
text += f'Picture {num_images}:'
|
384 |
+
text += self.image_start_tag + ele['image'] + self.image_end_tag
|
385 |
+
text += '\n'
|
386 |
+
elif 'text' in ele:
|
387 |
+
text += ele['text']
|
388 |
+
elif 'box' in ele:
|
389 |
+
if 'ref' in ele:
|
390 |
+
text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
|
391 |
+
for box in ele['box']:
|
392 |
+
text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
|
393 |
+
else:
|
394 |
+
raise ValueError("Unsupport element: " + str(ele))
|
395 |
+
return text
|
396 |
+
|
397 |
+
def _fetch_latest_picture(self, response, history):
|
398 |
+
if history is None:
|
399 |
+
history = []
|
400 |
+
_history = history + [(response, None)]
|
401 |
+
for q, r in _history[::-1]:
|
402 |
+
for ele in self.to_list_format(q)[::-1]:
|
403 |
+
if 'image' in ele:
|
404 |
+
return ele['image']
|
405 |
+
return None
|
406 |
+
|
407 |
+
def _fetch_all_box_with_ref(self, text):
|
408 |
+
list_format = self.to_list_format(text)
|
409 |
+
output = []
|
410 |
+
for i, ele in enumerate(list_format):
|
411 |
+
if 'box' in ele:
|
412 |
+
bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
|
413 |
+
assert len(bbox) == 4
|
414 |
+
output.append({'box': bbox})
|
415 |
+
if i > 0 and 'ref' in list_format[i - 1]:
|
416 |
+
output[-1]['ref'] = list_format[i - 1]['ref'].strip()
|
417 |
+
return output
|
418 |
+
|
419 |
+
def draw_bbox_on_latest_picture(
|
420 |
+
self,
|
421 |
+
response,
|
422 |
+
history=None,
|
423 |
+
) -> Optional[Image.Image]:
|
424 |
+
image = self._fetch_latest_picture(response, history)
|
425 |
+
if image is None:
|
426 |
+
return None
|
427 |
+
if image.startswith("http://") or image.startswith("https://"):
|
428 |
+
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
429 |
+
h, w = image.height, image.width
|
430 |
+
else:
|
431 |
+
image = np.asarray(Image.open(image).convert("RGB"))
|
432 |
+
h, w = image.shape[0], image.shape[1]
|
433 |
+
visualizer = Visualizer(image)
|
434 |
+
|
435 |
+
boxes = self._fetch_all_box_with_ref(response)
|
436 |
+
if not boxes:
|
437 |
+
return None
|
438 |
+
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()]) # init color
|
439 |
+
for box in boxes:
|
440 |
+
if 'ref' in box: # random new color for new refexps
|
441 |
+
color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
|
442 |
+
x1, y1, x2, y2 = box['box']
|
443 |
+
x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
|
444 |
+
visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
|
445 |
+
if 'ref' in box:
|
446 |
+
visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
|
447 |
+
return visualizer.output
|
448 |
+
|
449 |
+
|
450 |
+
import colorsys
|
451 |
+
import logging
|
452 |
+
import math
|
453 |
+
import numpy as np
|
454 |
+
import matplotlib as mpl
|
455 |
+
import matplotlib.colors as mplc
|
456 |
+
import matplotlib.figure as mplfigure
|
457 |
+
import torch
|
458 |
+
from matplotlib.backends.backend_agg import FigureCanvasAgg
|
459 |
+
from PIL import Image
|
460 |
+
import random
|
461 |
+
|
462 |
+
logger = logging.getLogger(__name__)
|
463 |
+
|
464 |
+
|
465 |
+
class VisImage:
|
466 |
+
def __init__(self, img, scale=1.0):
|
467 |
+
self.img = img
|
468 |
+
self.scale = scale
|
469 |
+
self.width, self.height = img.shape[1], img.shape[0]
|
470 |
+
self._setup_figure(img)
|
471 |
+
|
472 |
+
def _setup_figure(self, img):
|
473 |
+
fig = mplfigure.Figure(frameon=False)
|
474 |
+
self.dpi = fig.get_dpi()
|
475 |
+
# add a small 1e-2 to avoid precision lost due to matplotlib's truncation
|
476 |
+
# (https://github.com/matplotlib/matplotlib/issues/15363)
|
477 |
+
fig.set_size_inches(
|
478 |
+
(self.width * self.scale + 1e-2) / self.dpi,
|
479 |
+
(self.height * self.scale + 1e-2) / self.dpi,
|
480 |
+
)
|
481 |
+
self.canvas = FigureCanvasAgg(fig)
|
482 |
+
# self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
|
483 |
+
ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
|
484 |
+
ax.axis("off")
|
485 |
+
self.fig = fig
|
486 |
+
self.ax = ax
|
487 |
+
self.reset_image(img)
|
488 |
+
|
489 |
+
def reset_image(self, img):
|
490 |
+
img = img.astype("uint8")
|
491 |
+
self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
|
492 |
+
|
493 |
+
def save(self, filepath):
|
494 |
+
self.fig.savefig(filepath)
|
495 |
+
|
496 |
+
def get_image(self):
|
497 |
+
canvas = self.canvas
|
498 |
+
s, (width, height) = canvas.print_to_buffer()
|
499 |
+
|
500 |
+
buffer = np.frombuffer(s, dtype="uint8")
|
501 |
+
|
502 |
+
img_rgba = buffer.reshape(height, width, 4)
|
503 |
+
rgb, alpha = np.split(img_rgba, [3], axis=2)
|
504 |
+
return rgb.astype("uint8")
|
505 |
+
|
506 |
+
|
507 |
+
class Visualizer:
|
508 |
+
def __init__(self, img_rgb, metadata=None, scale=1.0):
|
509 |
+
self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
|
510 |
+
self.font_path = FONT_PATH
|
511 |
+
self.output = VisImage(self.img, scale=scale)
|
512 |
+
self.cpu_device = torch.device("cpu")
|
513 |
+
|
514 |
+
# too small texts are useless, therefore clamp to 14
|
515 |
+
self._default_font_size = max(
|
516 |
+
np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
|
517 |
+
)
|
518 |
+
|
519 |
+
def draw_text(
|
520 |
+
self,
|
521 |
+
text,
|
522 |
+
position,
|
523 |
+
*,
|
524 |
+
font_size=None,
|
525 |
+
color="g",
|
526 |
+
horizontal_alignment="center",
|
527 |
+
rotation=0,
|
528 |
+
):
|
529 |
+
if not font_size:
|
530 |
+
font_size = self._default_font_size
|
531 |
+
|
532 |
+
# since the text background is dark, we don't want the text to be dark
|
533 |
+
color = np.maximum(list(mplc.to_rgb(color)), 0.2)
|
534 |
+
color[np.argmax(color)] = max(0.8, np.max(color))
|
535 |
+
|
536 |
+
x, y = position
|
537 |
+
self.output.ax.text(
|
538 |
+
x,
|
539 |
+
y,
|
540 |
+
text,
|
541 |
+
size=font_size * self.output.scale,
|
542 |
+
fontproperties=FontProperties(fname=self.font_path),
|
543 |
+
bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
|
544 |
+
verticalalignment="top",
|
545 |
+
horizontalalignment=horizontal_alignment,
|
546 |
+
color=color,
|
547 |
+
zorder=10,
|
548 |
+
rotation=rotation,
|
549 |
+
)
|
550 |
+
return self.output
|
551 |
+
|
552 |
+
def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
|
553 |
+
x0, y0, x1, y1 = box_coord
|
554 |
+
width = x1 - x0
|
555 |
+
height = y1 - y0
|
556 |
+
|
557 |
+
linewidth = max(self._default_font_size / 4, 1)
|
558 |
+
|
559 |
+
self.output.ax.add_patch(
|
560 |
+
mpl.patches.Rectangle(
|
561 |
+
(x0, y0),
|
562 |
+
width,
|
563 |
+
height,
|
564 |
+
fill=False,
|
565 |
+
edgecolor=edge_color,
|
566 |
+
linewidth=linewidth * self.output.scale,
|
567 |
+
alpha=alpha,
|
568 |
+
linestyle=line_style,
|
569 |
+
)
|
570 |
+
)
|
571 |
+
return self.output
|
572 |
+
|
573 |
+
def get_output(self):
|
574 |
+
return self.output
|
tokenizer_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_max_length": 2048,
|
3 |
+
"tokenizer_class": "VitPhiTokenizer",
|
4 |
+
"auto_map": {
|
5 |
+
"AutoTokenizer": [
|
6 |
+
"tokenization_vitphi.VitPhiTokenizer",
|
7 |
+
null
|
8 |
+
]
|
9 |
+
}
|
10 |
+
}
|
visual.py
ADDED
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
from collections import OrderedDict
|
7 |
+
import math
|
8 |
+
import requests
|
9 |
+
from io import BytesIO
|
10 |
+
from functools import partial
|
11 |
+
from PIL import Image
|
12 |
+
from typing import Callable, Optional, Sequence, Tuple, List
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
import torch
|
16 |
+
from torch import nn
|
17 |
+
from torch.nn import functional as F
|
18 |
+
from torch.nn.init import trunc_normal_
|
19 |
+
from torchvision import transforms
|
20 |
+
from torchvision.transforms import InterpolationMode
|
21 |
+
|
22 |
+
|
23 |
+
def get_abs_pos(abs_pos, tgt_size):
|
24 |
+
# abs_pos: L, C
|
25 |
+
# tgt_size: M
|
26 |
+
# return: M, C
|
27 |
+
src_size = int(math.sqrt(abs_pos.size(0)))
|
28 |
+
tgt_size = int(math.sqrt(tgt_size))
|
29 |
+
dtype = abs_pos.dtype
|
30 |
+
|
31 |
+
if src_size != tgt_size:
|
32 |
+
return F.interpolate(
|
33 |
+
abs_pos.float().reshape(1, src_size, src_size, -1).permute(0, 3, 1, 2),
|
34 |
+
size=(tgt_size, tgt_size),
|
35 |
+
mode="bicubic",
|
36 |
+
align_corners=False,
|
37 |
+
).permute(0, 2, 3, 1).flatten(0, 2).to(dtype=dtype)
|
38 |
+
else:
|
39 |
+
return abs_pos
|
40 |
+
|
41 |
+
|
42 |
+
# https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
|
43 |
+
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
|
44 |
+
"""
|
45 |
+
grid_size: int of the grid height and width
|
46 |
+
return:
|
47 |
+
pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
|
48 |
+
"""
|
49 |
+
grid_h = np.arange(grid_size, dtype=np.float32)
|
50 |
+
grid_w = np.arange(grid_size, dtype=np.float32)
|
51 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
52 |
+
grid = np.stack(grid, axis=0)
|
53 |
+
|
54 |
+
grid = grid.reshape([2, 1, grid_size, grid_size])
|
55 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
56 |
+
if cls_token:
|
57 |
+
pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
|
58 |
+
return pos_embed
|
59 |
+
|
60 |
+
|
61 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
62 |
+
assert embed_dim % 2 == 0
|
63 |
+
|
64 |
+
# use half of dimensions to encode grid_h
|
65 |
+
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
|
66 |
+
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
|
67 |
+
|
68 |
+
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
|
69 |
+
return emb
|
70 |
+
|
71 |
+
|
72 |
+
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
73 |
+
"""
|
74 |
+
embed_dim: output dimension for each position
|
75 |
+
pos: a list of positions to be encoded: size (M,)
|
76 |
+
out: (M, D)
|
77 |
+
"""
|
78 |
+
assert embed_dim % 2 == 0
|
79 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
80 |
+
omega /= embed_dim / 2.
|
81 |
+
omega = 1. / 10000 ** omega # (D/2,)
|
82 |
+
|
83 |
+
pos = pos.reshape(-1) # (M,)
|
84 |
+
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
|
85 |
+
|
86 |
+
emb_sin = np.sin(out) # (M, D/2)
|
87 |
+
emb_cos = np.cos(out) # (M, D/2)
|
88 |
+
|
89 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
90 |
+
return emb
|
91 |
+
|
92 |
+
|
93 |
+
class Resampler(nn.Module):
|
94 |
+
"""
|
95 |
+
A 2D perceiver-resampler network with one cross attention layers by
|
96 |
+
(grid_size**2) learnable queries and 2d sincos pos_emb
|
97 |
+
Outputs:
|
98 |
+
A tensor with the shape of (grid_size**2, embed_dim)
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(
|
102 |
+
self,
|
103 |
+
grid_size,
|
104 |
+
embed_dim,
|
105 |
+
num_heads,
|
106 |
+
kv_dim=None,
|
107 |
+
norm_layer=nn.LayerNorm
|
108 |
+
):
|
109 |
+
super().__init__()
|
110 |
+
self.num_queries = grid_size ** 2
|
111 |
+
self.embed_dim = embed_dim
|
112 |
+
self.num_heads = num_heads
|
113 |
+
|
114 |
+
self.pos_embed = nn.Parameter(
|
115 |
+
torch.from_numpy(get_2d_sincos_pos_embed(embed_dim, grid_size)).float()
|
116 |
+
).requires_grad_(False)
|
117 |
+
|
118 |
+
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
|
119 |
+
trunc_normal_(self.query, std=.02)
|
120 |
+
|
121 |
+
if kv_dim is not None and kv_dim != embed_dim:
|
122 |
+
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
123 |
+
else:
|
124 |
+
self.kv_proj = nn.Identity()
|
125 |
+
|
126 |
+
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
|
127 |
+
self.ln_q = norm_layer(embed_dim)
|
128 |
+
self.ln_kv = norm_layer(embed_dim)
|
129 |
+
|
130 |
+
self.apply(self._init_weights)
|
131 |
+
|
132 |
+
def _init_weights(self, m):
|
133 |
+
if isinstance(m, nn.Linear):
|
134 |
+
trunc_normal_(m.weight, std=.02)
|
135 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
136 |
+
nn.init.constant_(m.bias, 0)
|
137 |
+
elif isinstance(m, nn.LayerNorm):
|
138 |
+
nn.init.constant_(m.bias, 0)
|
139 |
+
nn.init.constant_(m.weight, 1.0)
|
140 |
+
|
141 |
+
def forward(self, x, attn_mask=None):
|
142 |
+
|
143 |
+
pos_embed = get_abs_pos(self.pos_embed, x.size(1))
|
144 |
+
|
145 |
+
x = self.kv_proj(x)
|
146 |
+
x = self.ln_kv(x).permute(1, 0, 2)
|
147 |
+
|
148 |
+
N = x.shape[1]
|
149 |
+
q = self.ln_q(self.query)
|
150 |
+
out = self.attn(
|
151 |
+
self._repeat(q, N) + self.pos_embed.unsqueeze(1),
|
152 |
+
x + pos_embed.unsqueeze(1),
|
153 |
+
x,
|
154 |
+
attn_mask=attn_mask)[0]
|
155 |
+
return out.permute(1, 0, 2)
|
156 |
+
|
157 |
+
def _repeat(self, query, N: int):
|
158 |
+
return query.unsqueeze(1).repeat(1, N, 1)
|
159 |
+
|
160 |
+
|
161 |
+
class VisualAttention(nn.Module):
|
162 |
+
"""self-attention layer class.
|
163 |
+
|
164 |
+
Self-attention layer takes input with size [s, b, h]
|
165 |
+
and returns output of the same size.
|
166 |
+
"""
|
167 |
+
|
168 |
+
def __init__(self, embed_dim, num_heads,
|
169 |
+
bias=True, kdim=None, vdim=None):
|
170 |
+
super(VisualAttention, self).__init__()
|
171 |
+
self.embed_dim = embed_dim
|
172 |
+
self.kdim = kdim if kdim is not None else embed_dim
|
173 |
+
self.vdim = vdim if vdim is not None else embed_dim
|
174 |
+
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
175 |
+
|
176 |
+
self.num_heads = num_heads
|
177 |
+
|
178 |
+
# Per attention head and per partition values.
|
179 |
+
assert embed_dim % num_heads == 0
|
180 |
+
self.hidden_size_per_attention_head = embed_dim // num_heads
|
181 |
+
self.num_attention_heads_per_partition = num_heads
|
182 |
+
self.hidden_size_per_partition = embed_dim
|
183 |
+
|
184 |
+
# Strided linear layer.
|
185 |
+
assert self._qkv_same_embed_dim, 'Only Support SelfAttention Currently'
|
186 |
+
self.in_proj = nn.Linear(embed_dim, 3 * embed_dim)
|
187 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim)
|
188 |
+
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
189 |
+
|
190 |
+
def forward(self, query, key, value, attn_mask=None):
|
191 |
+
# query/key/value: [sq, b, h]
|
192 |
+
sq, b, _ = query.size()
|
193 |
+
|
194 |
+
assert query is key, 'Only Support Self-Attention Currently'
|
195 |
+
sk = sq
|
196 |
+
mixed_x_layer = self.in_proj(query)
|
197 |
+
|
198 |
+
# [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
|
199 |
+
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
200 |
+
(self.num_attention_heads_per_partition,
|
201 |
+
3 * self.hidden_size_per_attention_head)
|
202 |
+
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
203 |
+
|
204 |
+
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
205 |
+
query_layer, key_layer, value_layer = mixed_x_layer.split(
|
206 |
+
self.hidden_size_per_attention_head, dim=-1)
|
207 |
+
|
208 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
209 |
+
query_layer = query_layer.view(sq,
|
210 |
+
b * self.num_attention_heads_per_partition,
|
211 |
+
self.hidden_size_per_attention_head).transpose(0, 1)
|
212 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
213 |
+
key_layer = key_layer.view(sk,
|
214 |
+
b * self.num_attention_heads_per_partition,
|
215 |
+
self.hidden_size_per_attention_head).transpose(0, 1)
|
216 |
+
|
217 |
+
q_scaled = query_layer / self.norm_factor
|
218 |
+
if attn_mask is not None:
|
219 |
+
attention_probs = torch.baddbmm(attn_mask, q_scaled, key_layer.transpose(-2, -1))
|
220 |
+
else:
|
221 |
+
attention_probs = torch.bmm(q_scaled, key_layer.transpose(-2, -1))
|
222 |
+
attention_probs = attention_probs.softmax(dim=-1)
|
223 |
+
|
224 |
+
value_layer = value_layer.view(sk,
|
225 |
+
b * self.num_attention_heads_per_partition,
|
226 |
+
self.hidden_size_per_attention_head).transpose(0, 1)
|
227 |
+
|
228 |
+
# matmul: [b * np, sq, hn]
|
229 |
+
context_layer = torch.bmm(attention_probs, value_layer)
|
230 |
+
|
231 |
+
# change view [b, np, sq, hn]
|
232 |
+
context_layer = context_layer.view(b,
|
233 |
+
self.num_attention_heads_per_partition,
|
234 |
+
sq, self.hidden_size_per_attention_head)
|
235 |
+
|
236 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
237 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
238 |
+
|
239 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
240 |
+
new_context_layer_shape = context_layer.size()[:-2] + \
|
241 |
+
(self.hidden_size_per_partition,)
|
242 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
243 |
+
|
244 |
+
output = self.out_proj(context_layer)
|
245 |
+
|
246 |
+
return output
|
247 |
+
|
248 |
+
|
249 |
+
class VisualAttentionBlock(nn.Module):
|
250 |
+
def __init__(
|
251 |
+
self,
|
252 |
+
d_model: int,
|
253 |
+
n_head: int,
|
254 |
+
mlp_ratio: float = 4.0,
|
255 |
+
act_layer: Callable = nn.GELU,
|
256 |
+
norm_layer: Callable = nn.LayerNorm,
|
257 |
+
is_cross_attention: bool = False,
|
258 |
+
):
|
259 |
+
super().__init__()
|
260 |
+
|
261 |
+
self.ln_1 = norm_layer(d_model)
|
262 |
+
if is_cross_attention:
|
263 |
+
self.ln_1_kv = norm_layer(d_model)
|
264 |
+
|
265 |
+
self.ln_2 = norm_layer(d_model)
|
266 |
+
mlp_width = int(d_model * mlp_ratio)
|
267 |
+
self.attn = VisualAttention(d_model, n_head)
|
268 |
+
self.mlp = nn.Sequential(OrderedDict([
|
269 |
+
("c_fc", nn.Linear(d_model, mlp_width)),
|
270 |
+
("gelu", act_layer()),
|
271 |
+
("c_proj", nn.Linear(mlp_width, d_model))
|
272 |
+
]))
|
273 |
+
|
274 |
+
def attention(
|
275 |
+
self,
|
276 |
+
q_x: torch.Tensor,
|
277 |
+
k_x: Optional[torch.Tensor] = None,
|
278 |
+
v_x: Optional[torch.Tensor] = None,
|
279 |
+
attn_mask: Optional[torch.Tensor] = None,
|
280 |
+
):
|
281 |
+
k_x = k_x if k_x is not None else q_x
|
282 |
+
v_x = v_x if v_x is not None else q_x
|
283 |
+
|
284 |
+
attn_mask = attn_mask.to(q_x.dtype) if attn_mask is not None else None
|
285 |
+
return self.attn(q_x, k_x, v_x, attn_mask=attn_mask)
|
286 |
+
|
287 |
+
def forward(
|
288 |
+
self,
|
289 |
+
q_x: torch.Tensor,
|
290 |
+
k_x: Optional[torch.Tensor] = None,
|
291 |
+
v_x: Optional[torch.Tensor] = None,
|
292 |
+
attn_mask: Optional[torch.Tensor] = None,
|
293 |
+
):
|
294 |
+
k_x = self.ln_1_kv(k_x) if hasattr(self, "ln_1_kv") and k_x is not None else None
|
295 |
+
v_x = self.ln_1_kv(v_x) if hasattr(self, "ln_1_kv") and v_x is not None else None
|
296 |
+
|
297 |
+
x = q_x + self.attention(q_x=self.ln_1(q_x), k_x=k_x, v_x=v_x, attn_mask=attn_mask)
|
298 |
+
x = x + self.mlp(self.ln_2(x))
|
299 |
+
return x
|
300 |
+
|
301 |
+
|
302 |
+
class TransformerBlock(nn.Module):
|
303 |
+
def __init__(
|
304 |
+
self,
|
305 |
+
width: int,
|
306 |
+
layers: int,
|
307 |
+
heads: int,
|
308 |
+
mlp_ratio: float = 4.0,
|
309 |
+
act_layer: Callable = nn.GELU,
|
310 |
+
norm_layer: Callable = nn.LayerNorm,
|
311 |
+
):
|
312 |
+
super().__init__()
|
313 |
+
self.width = width
|
314 |
+
self.layers = layers
|
315 |
+
|
316 |
+
self.resblocks = nn.ModuleList([
|
317 |
+
VisualAttentionBlock(
|
318 |
+
width, heads, mlp_ratio, act_layer=act_layer, norm_layer=norm_layer)
|
319 |
+
for _ in range(layers)
|
320 |
+
])
|
321 |
+
|
322 |
+
def get_cast_dtype(self) -> torch.dtype:
|
323 |
+
return self.resblocks[0].mlp.c_fc.weight.dtype
|
324 |
+
|
325 |
+
def get_cast_device(self) -> torch.device:
|
326 |
+
return self.resblocks[0].mlp.c_fc.weight.device
|
327 |
+
|
328 |
+
def forward(self, x: torch.Tensor, attn_mask: Optional[torch.Tensor] = None):
|
329 |
+
for r in self.resblocks:
|
330 |
+
x = r(x, attn_mask=attn_mask)
|
331 |
+
return x
|
332 |
+
|
333 |
+
|
334 |
+
class VisionTransformer(nn.Module):
|
335 |
+
|
336 |
+
def __init__(
|
337 |
+
self,
|
338 |
+
image_size: int,
|
339 |
+
patch_size: int,
|
340 |
+
width: int,
|
341 |
+
layers: int,
|
342 |
+
heads: int,
|
343 |
+
mlp_ratio: float,
|
344 |
+
n_queries: int = 256,
|
345 |
+
output_dim: int = 512,
|
346 |
+
**kwargs
|
347 |
+
):
|
348 |
+
super().__init__()
|
349 |
+
image_height, image_width = self.image_size = (image_size, image_size)
|
350 |
+
patch_height, patch_width = self.patch_size = (patch_size, patch_size)
|
351 |
+
self.grid_size = (image_height // patch_height, image_width // patch_width)
|
352 |
+
self.output_dim = output_dim
|
353 |
+
|
354 |
+
mean = (0.48145466, 0.4578275, 0.40821073)
|
355 |
+
std = (0.26862954, 0.26130258, 0.27577711)
|
356 |
+
self.image_transform = transforms.Compose([
|
357 |
+
transforms.Resize(
|
358 |
+
(image_size, image_size),
|
359 |
+
interpolation=InterpolationMode.BICUBIC
|
360 |
+
),
|
361 |
+
transforms.ToTensor(),
|
362 |
+
transforms.Normalize(mean=mean, std=std),
|
363 |
+
])
|
364 |
+
|
365 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
366 |
+
|
367 |
+
# class embeddings and positional embeddings
|
368 |
+
scale = width ** -0.5
|
369 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn(256, width))
|
370 |
+
|
371 |
+
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
372 |
+
act_layer = nn.GELU
|
373 |
+
|
374 |
+
self.ln_pre = norm_layer(width)
|
375 |
+
self.transformer = TransformerBlock(
|
376 |
+
width,
|
377 |
+
layers,
|
378 |
+
heads,
|
379 |
+
mlp_ratio,
|
380 |
+
act_layer=act_layer,
|
381 |
+
norm_layer=norm_layer,
|
382 |
+
)
|
383 |
+
|
384 |
+
self.attn_pool = Resampler(
|
385 |
+
grid_size=int(math.sqrt(n_queries)),
|
386 |
+
embed_dim=output_dim,
|
387 |
+
num_heads=output_dim // 128,
|
388 |
+
kv_dim=width,
|
389 |
+
norm_layer=norm_layer,
|
390 |
+
)
|
391 |
+
self.ln_post = norm_layer(output_dim)
|
392 |
+
self.proj = nn.Parameter((output_dim ** -0.5) * torch.randn(output_dim, output_dim))
|
393 |
+
|
394 |
+
def forward(self, x: torch.Tensor):
|
395 |
+
x = x.to(
|
396 |
+
dtype=self.transformer.get_cast_dtype(),
|
397 |
+
device=self.transformer.get_cast_device(),
|
398 |
+
)
|
399 |
+
# to patches
|
400 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
401 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
402 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
403 |
+
|
404 |
+
x = x + get_abs_pos(self.positional_embedding, x.size(1))
|
405 |
+
|
406 |
+
x = self.ln_pre(x)
|
407 |
+
|
408 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
409 |
+
x = self.transformer(x)
|
410 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
411 |
+
|
412 |
+
x = self.attn_pool(x)
|
413 |
+
x = self.ln_post(x)
|
414 |
+
x = x @ self.proj
|
415 |
+
|
416 |
+
return x
|
417 |
+
|
418 |
+
def encode(self, image_paths: List[str]):
|
419 |
+
images = []
|
420 |
+
for image_path in image_paths:
|
421 |
+
if image_path.startswith("http://") or image_path.startswith("https://"):
|
422 |
+
image = Image.open(requests.get(image_path, stream=True).raw)
|
423 |
+
else:
|
424 |
+
image = Image.open(image_path)
|
425 |
+
image = image.convert("RGB")
|
426 |
+
images.append(self.image_transform(image))
|
427 |
+
images = torch.stack(images, dim=0)
|
428 |
+
return self(images)
|
vocab.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|