Hi RL
Browse files- .gitattributes +1 -0
- LunarLander1.zip +3 -0
- LunarLander1/_stable_baselines3_version +1 -0
- LunarLander1/data +94 -0
- LunarLander1/policy.optimizer.pth +3 -0
- LunarLander1/policy.pth +3 -0
- LunarLander1/pytorch_variables.pth +3 -0
- LunarLander1/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
LunarLander1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaa8da12d076dec3d3f55901e9fbb1b7c07db354ba5f815d5a84d2b81167d4d7
|
3 |
+
size 144040
|
LunarLander1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
LunarLander1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f474b4254d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f474b425560>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f474b4255f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f474b425680>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f474b425710>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f474b4257a0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f474b425830>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f474b4258c0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f474b425950>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f474b4259e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f474b425a70>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f474b470900>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651708041.9386547,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGBpGD72KES2uae0uSbNh7Yympk7/lcgtwAAgD8AAIA/000fPlh4lj+wVYw+xNyPvp5k5T2O8wI9AAAAAAAAAACzGEe+T2k4vHXxN7vqRiK5//qlPY5EXjoAAIA/AACAPw1PET6kp0Q8ThCHvfUyNryVENA9K18uvQAAgD8AAIA/oEoFvvaUKz+4uIY9/AZtvmEfFT3ETB69AAAAAAAAAAB6cX0+h7MDP4C3H75cyHy+AXYgO3ICBz0AAAAAAAAAAABh4L3hirg5a/rvulFLlDnjxR+7Y0GmNwAAgD8AAIA/GvT7PcOtcrryKxq7q4+iNPAaBLtaby86AACAPwAAgD86poc+nznFuyxzjLwV2IU5cZYXvQ5CZDoAAIA/AACAP5rfF71WzrA/zqHpvtRGUb4rNe67LQPsvQAAAAAAAAAAU243PtcEUjwzmPm49boDt2cS2j2y2x04AACAPwAAgD/NVEu8e2adusv3T7spe/w2+JbXOvVhYbYAAIA/AACAP5rtuD1xbWa5QdAwO11okrY6TVm7Xl9OugAAgD8AAIA/UiWDvrhzzTw34Ro649e3uMMCXr42KU65AACAPwAAgD/NEL+8mmICPuXdiTmP1iu+rdzKvSZY0jwAAAAAAAAAADPvPrzDWUW6E8pnu9MenjbZ7826bjGFOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiEuOOyUXZECUhpRSlIwBbJRN6AOMAXSUR0CHxu8ox59mdX2UKGgGaAloD0MIUmStodTDWUCUhpRSlGgVTegDaBZHQIfZSb6P8yh1fZQoaAZoCWgPQwgGvMyw0eZqQJSGlFKUaBVNbwJoFkdAh+VGEwnIAHV9lChoBmgJaA9DCN3NUx1ywllAlIaUUpRoFU3oA2gWR0CH6yF49ovjdX2UKGgGaAloD0MIA8+9h0vnWkCUhpRSlGgVTegDaBZHQIf5JP9DQZ51fZQoaAZoCWgPQwioUx7dCMZbQJSGlFKUaBVN6ANoFkdAh/10JF9a2XV9lChoBmgJaA9DCClcj8L1EFlAlIaUUpRoFU3oA2gWR0CIBS/HHWBjdX2UKGgGaAloD0MITkUqjC3nVECUhpRSlGgVTegDaBZHQIgQbGcWj451fZQoaAZoCWgPQwgtXcE2YgxoQJSGlFKUaBVNyAFoFkdAiBIE7wKBunV9lChoBmgJaA9DCGB4JclzgTVAlIaUUpRoFU0WAWgWR0CIEsCGN70GdX2UKGgGaAloD0MIQu23dqLlVECUhpRSlGgVTegDaBZHQIgaAlt0mt11fZQoaAZoCWgPQwjcSNkiaRVQwJSGlFKUaBVNoQFoFkdAiByW+fywwHV9lChoBmgJaA9DCBIwury5/GNAlIaUUpRoFU3oA2gWR0CIHxZha1TjdX2UKGgGaAloD0MIwy0fSUkvCsCUhpRSlGgVS/xoFkdAiCLohpxm03V9lChoBmgJaA9DCLaeIRyzzFZAlIaUUpRoFU3oA2gWR0CIP1d/J/5MdX2UKGgGaAloD0MIzNJOzeUWXkCUhpRSlGgVTegDaBZHQIhC8ejmCAd1fZQoaAZoCWgPQwhZ94+F6IJDwJSGlFKUaBVNVQFoFkdAiENA3kxREXV9lChoBmgJaA9DCPLrh9hgvTvAlIaUUpRoFU0kAWgWR0CIRc3w1BMSdX2UKGgGaAloD0MInOCbps/4VkCUhpRSlGgVTegDaBZHQIhJ1fzBhx51fZQoaAZoCWgPQwgPY9LfS79MQJSGlFKUaBVN6ANoFkdAiEuXeFcps3V9lChoBmgJaA9DCLL0oQvq3z1AlIaUUpRoFU0jAWgWR0CITw8SwnpjdX2UKGgGaAloD0MI2XxcG6oEYkCUhpRSlGgVTdUBaBZHQIhXbLbHp8p1fZQoaAZoCWgPQwiuYYbGE55iQJSGlFKUaBVN6ANoFkdAiFgSTY/Vy3V9lChoBmgJaA9DCGH9n8N8xFxAlIaUUpRoFU3oA2gWR0CIW01Muez2dX2UKGgGaAloD0MI2jwOg/leUMCUhpRSlGgVTTEBaBZHQIifVwkxASp1fZQoaAZoCWgPQwiqSfCGNAxDwJSGlFKUaBVL+mgWR0CIoUH1vl2edX2UKGgGaAloD0MIPGpMiLmUIcCUhpRSlGgVTRYBaBZHQIirJOafBep1fZQoaAZoCWgPQwhbCkj7H71cQJSGlFKUaBVN6ANoFkdAiLbP+GXXy3V9lChoBmgJaA9DCDFgyVUsJkdAlIaUUpRoFU0zAWgWR0CIv2hW5paidX2UKGgGaAloD0MIuJBHcCPxXkCUhpRSlGgVTegDaBZHQIjErGcWj451fZQoaAZoCWgPQwgr24e85UYyQJSGlFKUaBVNDwFoFkdAiM1bQLNOd3V9lChoBmgJaA9DCO4/Mh06iVZAlIaUUpRoFU3oA2gWR0CI0QJtSAH3dX2UKGgGaAloD0MItrkxPWEvXkCUhpRSlGgVTegDaBZHQIjeIzabnYB1fZQoaAZoCWgPQwhyameY2mlZQJSGlFKUaBVN6ANoFkdAiOqZyMkyDnV9lChoBmgJaA9DCKQXtftVXlxAlIaUUpRoFU3oA2gWR0CI7ao/iYLLdX2UKGgGaAloD0MI7FG4HoV3MUCUhpRSlGgVTTEBaBZHQIjxlGwzLwF1fZQoaAZoCWgPQwgBwRw9frs7wJSGlFKUaBVL3mgWR0CI8bzEJjUedX2UKGgGaAloD0MI1F+vsOBZXECUhpRSlGgVTegDaBZHQIkV74i5d4V1fZQoaAZoCWgPQwjoFORnIzxiQJSGlFKUaBVN6ANoFkdAiRZM/QjUu3V9lChoBmgJaA9DCA6itaLNKFpAlIaUUpRoFU3oA2gWR0CJGRRoAXEZdX2UKGgGaAloD0MIHVa45SPgXECUhpRSlGgVTegDaBZHQIkfVVtGd7R1fZQoaAZoCWgPQwivJHmu7xsrQJSGlFKUaBVNRgFoFkdAiShVcMVk+XV9lChoBmgJaA9DCAFtq1ln5GFAlIaUUpRoFU3oA2gWR0CJLSq4pc5bdX2UKGgGaAloD0MIuoWuRKAjWUCUhpRSlGgVTegDaBZHQIkt5zHS4ON1fZQoaAZoCWgPQwhuNIC3QGIKQJSGlFKUaBVL9WgWR0CJcX/xUedTdX2UKGgGaAloD0MIfsaFAyHPXUCUhpRSlGgVTegDaBZHQIl3G6I3zc11fZQoaAZoCWgPQwjFkJxM3C40QJSGlFKUaBVNAgFoFkdAiXvbu2JBPnV9lChoBmgJaA9DCMOgTKPJE2FAlIaUUpRoFU3oA2gWR0CJgkSWZ7XydX2UKGgGaAloD0MI7GmHvyZjO0CUhpRSlGgVS/RoFkdAiYZbdSEUTXV9lChoBmgJaA9DCOsbmNwoCV5AlIaUUpRoFU3oA2gWR0CJjOH5aePJdX2UKGgGaAloD0MIjzaOWIv4W0CUhpRSlGgVTegDaBZHQImZbdepn6F1fZQoaAZoCWgPQwjyJr9Fp7phQJSGlFKUaBVN6ANoFkdAiaXJnxri2nV9lChoBmgJaA9DCHFV2XdFjGBAlIaUUpRoFU3oA2gWR0CJtBBFd9lVdX2UKGgGaAloD0MIjINLx5y7W0CUhpRSlGgVTegDaBZHQInBRA4XGfh1fZQoaAZoCWgPQwiKOQg6Wv9dQJSGlFKUaBVN6ANoFkdAicTNkOI683V9lChoBmgJaA9DCAd6qG3DFF9AlIaUUpRoFU3oA2gWR0CJyTbxEv0zdX2UKGgGaAloD0MIOq5GdqVhWECUhpRSlGgVTegDaBZHQInwY5aNdZ91fZQoaAZoCWgPQwjpfk5Bfs1WQJSGlFKUaBVN6ANoFkdAifOwfp2U0XV9lChoBmgJaA9DCGlU4GQbs2FAlIaUUpRoFU3oA2gWR0CKBnfUF0PpdX2UKGgGaAloD0MIIqmFksm1XkCUhpRSlGgVTegDaBZHQIoM4iaAnUl1fZQoaAZoCWgPQwiHiQYpeBxdQJSGlFKUaBVN6ANoFkdAilRilJpWWHV9lChoBmgJaA9DCJj2zf3V6V1AlIaUUpRoFU3oA2gWR0CKWp59mYjTdX2UKGgGaAloD0MIAAFr1a70YUCUhpRSlGgVTegDaBZHQIpgBPuXu3N1fZQoaAZoCWgPQwjvAbovZwY5QJSGlFKUaBVNPAFoFkdAimBIrWiDd3V9lChoBmgJaA9DCDofniXI6lRAlIaUUpRoFU3oA2gWR0CKZnKcurZKdX2UKGgGaAloD0MIuCIxQQ1zV0CUhpRSlGgVTegDaBZHQIpqenfl6qt1fZQoaAZoCWgPQwhAGHjuPXRjQJSGlFKUaBVNkwJoFkdAimxH8TBZZHV9lChoBmgJaA9DCFLvqZz2IFtAlIaUUpRoFU3oA2gWR0CKb80k4WDZdX2UKGgGaAloD0MIQSybOSTSYkCUhpRSlGgVTegDaBZHQIp6Tu+h4+t1fZQoaAZoCWgPQwhZUu4+x38nwJSGlFKUaBVL62gWR0CKf1EzfrKOdX2UKGgGaAloD0MIpu7KLhg5XUCUhpRSlGgVTegDaBZHQIqEShL5AQh1fZQoaAZoCWgPQwht/l91ZEFiQJSGlFKUaBVN6ANoFkdAipAL0Bfa6HV9lChoBmgJaA9DCEdYVMRp5mBAlIaUUpRoFU3oA2gWR0CKnmwxFiKBdX2UKGgGaAloD0MIA7Fs5hCTYUCUhpRSlGgVTegDaBZHQIqigiX6ZYx1fZQoaAZoCWgPQwgsvMtFfIcfQJSGlFKUaBVNHgFoFkdAirAzuWrwOXV9lChoBmgJaA9DCESF6ubiRzRAlIaUUpRoFU1SAWgWR0CKyCKohpxndX2UKGgGaAloD0MILskBu5omUECUhpRSlGgVTegDaBZHQIrJysOoYN11fZQoaAZoCWgPQwh2/u2y36BhQJSGlFKUaBVN6ANoFkdAitwefAbhnHV9lChoBmgJaA9DCLovZ7YrxFpAlIaUUpRoFU3oA2gWR0CK4tHbRF7VdX2UKGgGaAloD0MICRhd3hy9YUCUhpRSlGgVTegDaBZHQIr0zkELYwt1fZQoaAZoCWgPQwgSo+cWupBhQJSGlFKUaBVN6ANoFkdAizLZoGpuM3V9lChoBmgJaA9DCJ4LI72okmBAlIaUUpRoFU3oA2gWR0CLONVfeDWcdX2UKGgGaAloD0MIrimQ2VlNYkCUhpRSlGgVTegDaBZHQItAniHZbpx1fZQoaAZoCWgPQwinzM03Io5hQJSGlFKUaBVN6ANoFkdAi0Wai0v4/XV9lChoBmgJaA9DCNTzbiwoDl9AlIaUUpRoFU3oA2gWR0CLR+nBtUGWdX2UKGgGaAloD0MIINCZtKksXUCUhpRSlGgVTegDaBZHQItMWLgn+hp1fZQoaAZoCWgPQwjspSkCnMxfQJSGlFKUaBVN6ANoFkdAi1gnE2pAEHV9lChoBmgJaA9DCGRz1TxHEDTAlIaUUpRoFUvsaBZHQItdsrqdH2B1fZQoaAZoCWgPQwgNp8zNN1deQJSGlFKUaBVN6ANoFkdAi13L9/BnBnV9lChoBmgJaA9DCMjsLHqnUhNAlIaUUpRoFU08AWgWR0CLc9AC4jKQdX2UKGgGaAloD0MIG0mCcIVzYUCUhpRSlGgVTegDaBZHQIt9NdxAB1d1fZQoaAZoCWgPQwjVk/lH3+ZbQJSGlFKUaBVN6ANoFkdAi4E80UGmk3V9lChoBmgJaA9DCK+ZfLPNbTtAlIaUUpRoFU0YAWgWR0CLh/6JIlMRdX2UKGgGaAloD0MIfm/Tn/34XECUhpRSlGgVTegDaBZHQIuOcTYdyT91fZQoaAZoCWgPQwidK0oJQR1gQJSGlFKUaBVN6ANoFkdAi6NnuRcNY3V9lChoBmgJaA9DCHP2zmiraV1AlIaUUpRoFU3oA2gWR0CLpOWGh24edX2UKGgGaAloD0MILsVVZd8nYECUhpRSlGgVTegDaBZHQIu0T8gpz911fZQoaAZoCWgPQwigGFkyx41YQJSGlFKUaBVN6ANoFkdAi7obkGRmsnV9lChoBmgJaA9DCJJbk27LwmJAlIaUUpRoFU3oA2gWR0CLyQ1PWQOndX2UKGgGaAloD0MI4gFlU67MYECUhpRSlGgVTegDaBZHQIvPIA0bcXZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
LunarLander1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0af3840f173207487fdb5d4e5e4adf65fcae9514244f6d8d8cceba983cd4605e
|
3 |
+
size 84829
|
LunarLander1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b13551ff4379c452188542e9d6776fd8e4d4396ece8600cd139ac9be7386b75d
|
3 |
+
size 43201
|
LunarLander1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
LunarLander1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 131.32 +/- 54.42
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f474b4254d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f474b425560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f474b4255f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f474b425680>", "_build": "<function ActorCriticPolicy._build at 0x7f474b425710>", "forward": "<function ActorCriticPolicy.forward at 0x7f474b4257a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f474b425830>", "_predict": "<function ActorCriticPolicy._predict at 0x7f474b4258c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f474b425950>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f474b4259e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f474b425a70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f474b470900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651708041.9386547, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGBpGD72KES2uae0uSbNh7Yympk7/lcgtwAAgD8AAIA/000fPlh4lj+wVYw+xNyPvp5k5T2O8wI9AAAAAAAAAACzGEe+T2k4vHXxN7vqRiK5//qlPY5EXjoAAIA/AACAPw1PET6kp0Q8ThCHvfUyNryVENA9K18uvQAAgD8AAIA/oEoFvvaUKz+4uIY9/AZtvmEfFT3ETB69AAAAAAAAAAB6cX0+h7MDP4C3H75cyHy+AXYgO3ICBz0AAAAAAAAAAABh4L3hirg5a/rvulFLlDnjxR+7Y0GmNwAAgD8AAIA/GvT7PcOtcrryKxq7q4+iNPAaBLtaby86AACAPwAAgD86poc+nznFuyxzjLwV2IU5cZYXvQ5CZDoAAIA/AACAP5rfF71WzrA/zqHpvtRGUb4rNe67LQPsvQAAAAAAAAAAU243PtcEUjwzmPm49boDt2cS2j2y2x04AACAPwAAgD/NVEu8e2adusv3T7spe/w2+JbXOvVhYbYAAIA/AACAP5rtuD1xbWa5QdAwO11okrY6TVm7Xl9OugAAgD8AAIA/UiWDvrhzzTw34Ro649e3uMMCXr42KU65AACAPwAAgD/NEL+8mmICPuXdiTmP1iu+rdzKvSZY0jwAAAAAAAAAADPvPrzDWUW6E8pnu9MenjbZ7826bjGFOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIiEuOOyUXZECUhpRSlIwBbJRN6AOMAXSUR0CHxu8ox59mdX2UKGgGaAloD0MIUmStodTDWUCUhpRSlGgVTegDaBZHQIfZSb6P8yh1fZQoaAZoCWgPQwgGvMyw0eZqQJSGlFKUaBVNbwJoFkdAh+VGEwnIAHV9lChoBmgJaA9DCN3NUx1ywllAlIaUUpRoFU3oA2gWR0CH6yF49ovjdX2UKGgGaAloD0MIA8+9h0vnWkCUhpRSlGgVTegDaBZHQIf5JP9DQZ51fZQoaAZoCWgPQwioUx7dCMZbQJSGlFKUaBVN6ANoFkdAh/10JF9a2XV9lChoBmgJaA9DCClcj8L1EFlAlIaUUpRoFU3oA2gWR0CIBS/HHWBjdX2UKGgGaAloD0MITkUqjC3nVECUhpRSlGgVTegDaBZHQIgQbGcWj451fZQoaAZoCWgPQwgtXcE2YgxoQJSGlFKUaBVNyAFoFkdAiBIE7wKBunV9lChoBmgJaA9DCGB4JclzgTVAlIaUUpRoFU0WAWgWR0CIEsCGN70GdX2UKGgGaAloD0MIQu23dqLlVECUhpRSlGgVTegDaBZHQIgaAlt0mt11fZQoaAZoCWgPQwjcSNkiaRVQwJSGlFKUaBVNoQFoFkdAiByW+fywwHV9lChoBmgJaA9DCBIwury5/GNAlIaUUpRoFU3oA2gWR0CIHxZha1TjdX2UKGgGaAloD0MIwy0fSUkvCsCUhpRSlGgVS/xoFkdAiCLohpxm03V9lChoBmgJaA9DCLaeIRyzzFZAlIaUUpRoFU3oA2gWR0CIP1d/J/5MdX2UKGgGaAloD0MIzNJOzeUWXkCUhpRSlGgVTegDaBZHQIhC8ejmCAd1fZQoaAZoCWgPQwhZ94+F6IJDwJSGlFKUaBVNVQFoFkdAiENA3kxREXV9lChoBmgJaA9DCPLrh9hgvTvAlIaUUpRoFU0kAWgWR0CIRc3w1BMSdX2UKGgGaAloD0MInOCbps/4VkCUhpRSlGgVTegDaBZHQIhJ1fzBhx51fZQoaAZoCWgPQwgPY9LfS79MQJSGlFKUaBVN6ANoFkdAiEuXeFcps3V9lChoBmgJaA9DCLL0oQvq3z1AlIaUUpRoFU0jAWgWR0CITw8SwnpjdX2UKGgGaAloD0MI2XxcG6oEYkCUhpRSlGgVTdUBaBZHQIhXbLbHp8p1fZQoaAZoCWgPQwiuYYbGE55iQJSGlFKUaBVN6ANoFkdAiFgSTY/Vy3V9lChoBmgJaA9DCGH9n8N8xFxAlIaUUpRoFU3oA2gWR0CIW01Muez2dX2UKGgGaAloD0MI2jwOg/leUMCUhpRSlGgVTTEBaBZHQIifVwkxASp1fZQoaAZoCWgPQwiqSfCGNAxDwJSGlFKUaBVL+mgWR0CIoUH1vl2edX2UKGgGaAloD0MIPGpMiLmUIcCUhpRSlGgVTRYBaBZHQIirJOafBep1fZQoaAZoCWgPQwhbCkj7H71cQJSGlFKUaBVN6ANoFkdAiLbP+GXXy3V9lChoBmgJaA9DCDFgyVUsJkdAlIaUUpRoFU0zAWgWR0CIv2hW5paidX2UKGgGaAloD0MIuJBHcCPxXkCUhpRSlGgVTegDaBZHQIjErGcWj451fZQoaAZoCWgPQwgr24e85UYyQJSGlFKUaBVNDwFoFkdAiM1bQLNOd3V9lChoBmgJaA9DCO4/Mh06iVZAlIaUUpRoFU3oA2gWR0CI0QJtSAH3dX2UKGgGaAloD0MItrkxPWEvXkCUhpRSlGgVTegDaBZHQIjeIzabnYB1fZQoaAZoCWgPQwhyameY2mlZQJSGlFKUaBVN6ANoFkdAiOqZyMkyDnV9lChoBmgJaA9DCKQXtftVXlxAlIaUUpRoFU3oA2gWR0CI7ao/iYLLdX2UKGgGaAloD0MI7FG4HoV3MUCUhpRSlGgVTTEBaBZHQIjxlGwzLwF1fZQoaAZoCWgPQwgBwRw9frs7wJSGlFKUaBVL3mgWR0CI8bzEJjUedX2UKGgGaAloD0MI1F+vsOBZXECUhpRSlGgVTegDaBZHQIkV74i5d4V1fZQoaAZoCWgPQwjoFORnIzxiQJSGlFKUaBVN6ANoFkdAiRZM/QjUu3V9lChoBmgJaA9DCA6itaLNKFpAlIaUUpRoFU3oA2gWR0CJGRRoAXEZdX2UKGgGaAloD0MIHVa45SPgXECUhpRSlGgVTegDaBZHQIkfVVtGd7R1fZQoaAZoCWgPQwivJHmu7xsrQJSGlFKUaBVNRgFoFkdAiShVcMVk+XV9lChoBmgJaA9DCAFtq1ln5GFAlIaUUpRoFU3oA2gWR0CJLSq4pc5bdX2UKGgGaAloD0MIuoWuRKAjWUCUhpRSlGgVTegDaBZHQIkt5zHS4ON1fZQoaAZoCWgPQwhuNIC3QGIKQJSGlFKUaBVL9WgWR0CJcX/xUedTdX2UKGgGaAloD0MIfsaFAyHPXUCUhpRSlGgVTegDaBZHQIl3G6I3zc11fZQoaAZoCWgPQwjFkJxM3C40QJSGlFKUaBVNAgFoFkdAiXvbu2JBPnV9lChoBmgJaA9DCMOgTKPJE2FAlIaUUpRoFU3oA2gWR0CJgkSWZ7XydX2UKGgGaAloD0MI7GmHvyZjO0CUhpRSlGgVS/RoFkdAiYZbdSEUTXV9lChoBmgJaA9DCOsbmNwoCV5AlIaUUpRoFU3oA2gWR0CJjOH5aePJdX2UKGgGaAloD0MIjzaOWIv4W0CUhpRSlGgVTegDaBZHQImZbdepn6F1fZQoaAZoCWgPQwjyJr9Fp7phQJSGlFKUaBVN6ANoFkdAiaXJnxri2nV9lChoBmgJaA9DCHFV2XdFjGBAlIaUUpRoFU3oA2gWR0CJtBBFd9lVdX2UKGgGaAloD0MIjINLx5y7W0CUhpRSlGgVTegDaBZHQInBRA4XGfh1fZQoaAZoCWgPQwiKOQg6Wv9dQJSGlFKUaBVN6ANoFkdAicTNkOI683V9lChoBmgJaA9DCAd6qG3DFF9AlIaUUpRoFU3oA2gWR0CJyTbxEv0zdX2UKGgGaAloD0MIOq5GdqVhWECUhpRSlGgVTegDaBZHQInwY5aNdZ91fZQoaAZoCWgPQwjpfk5Bfs1WQJSGlFKUaBVN6ANoFkdAifOwfp2U0XV9lChoBmgJaA9DCGlU4GQbs2FAlIaUUpRoFU3oA2gWR0CKBnfUF0PpdX2UKGgGaAloD0MIIqmFksm1XkCUhpRSlGgVTegDaBZHQIoM4iaAnUl1fZQoaAZoCWgPQwiHiQYpeBxdQJSGlFKUaBVN6ANoFkdAilRilJpWWHV9lChoBmgJaA9DCJj2zf3V6V1AlIaUUpRoFU3oA2gWR0CKWp59mYjTdX2UKGgGaAloD0MIAAFr1a70YUCUhpRSlGgVTegDaBZHQIpgBPuXu3N1fZQoaAZoCWgPQwjvAbovZwY5QJSGlFKUaBVNPAFoFkdAimBIrWiDd3V9lChoBmgJaA9DCDofniXI6lRAlIaUUpRoFU3oA2gWR0CKZnKcurZKdX2UKGgGaAloD0MIuCIxQQ1zV0CUhpRSlGgVTegDaBZHQIpqenfl6qt1fZQoaAZoCWgPQwhAGHjuPXRjQJSGlFKUaBVNkwJoFkdAimxH8TBZZHV9lChoBmgJaA9DCFLvqZz2IFtAlIaUUpRoFU3oA2gWR0CKb80k4WDZdX2UKGgGaAloD0MIQSybOSTSYkCUhpRSlGgVTegDaBZHQIp6Tu+h4+t1fZQoaAZoCWgPQwhZUu4+x38nwJSGlFKUaBVL62gWR0CKf1EzfrKOdX2UKGgGaAloD0MIpu7KLhg5XUCUhpRSlGgVTegDaBZHQIqEShL5AQh1fZQoaAZoCWgPQwht/l91ZEFiQJSGlFKUaBVN6ANoFkdAipAL0Bfa6HV9lChoBmgJaA9DCEdYVMRp5mBAlIaUUpRoFU3oA2gWR0CKnmwxFiKBdX2UKGgGaAloD0MIA7Fs5hCTYUCUhpRSlGgVTegDaBZHQIqigiX6ZYx1fZQoaAZoCWgPQwgsvMtFfIcfQJSGlFKUaBVNHgFoFkdAirAzuWrwOXV9lChoBmgJaA9DCESF6ubiRzRAlIaUUpRoFU1SAWgWR0CKyCKohpxndX2UKGgGaAloD0MILskBu5omUECUhpRSlGgVTegDaBZHQIrJysOoYN11fZQoaAZoCWgPQwh2/u2y36BhQJSGlFKUaBVN6ANoFkdAitwefAbhnHV9lChoBmgJaA9DCLovZ7YrxFpAlIaUUpRoFU3oA2gWR0CK4tHbRF7VdX2UKGgGaAloD0MICRhd3hy9YUCUhpRSlGgVTegDaBZHQIr0zkELYwt1fZQoaAZoCWgPQwgSo+cWupBhQJSGlFKUaBVN6ANoFkdAizLZoGpuM3V9lChoBmgJaA9DCJ4LI72okmBAlIaUUpRoFU3oA2gWR0CLONVfeDWcdX2UKGgGaAloD0MIrimQ2VlNYkCUhpRSlGgVTegDaBZHQItAniHZbpx1fZQoaAZoCWgPQwinzM03Io5hQJSGlFKUaBVN6ANoFkdAi0Wai0v4/XV9lChoBmgJaA9DCNTzbiwoDl9AlIaUUpRoFU3oA2gWR0CLR+nBtUGWdX2UKGgGaAloD0MIINCZtKksXUCUhpRSlGgVTegDaBZHQItMWLgn+hp1fZQoaAZoCWgPQwjspSkCnMxfQJSGlFKUaBVN6ANoFkdAi1gnE2pAEHV9lChoBmgJaA9DCGRz1TxHEDTAlIaUUpRoFUvsaBZHQItdsrqdH2B1fZQoaAZoCWgPQwgNp8zNN1deQJSGlFKUaBVN6ANoFkdAi13L9/BnBnV9lChoBmgJaA9DCMjsLHqnUhNAlIaUUpRoFU08AWgWR0CLc9AC4jKQdX2UKGgGaAloD0MIG0mCcIVzYUCUhpRSlGgVTegDaBZHQIt9NdxAB1d1fZQoaAZoCWgPQwjVk/lH3+ZbQJSGlFKUaBVN6ANoFkdAi4E80UGmk3V9lChoBmgJaA9DCK+ZfLPNbTtAlIaUUpRoFU0YAWgWR0CLh/6JIlMRdX2UKGgGaAloD0MIfm/Tn/34XECUhpRSlGgVTegDaBZHQIuOcTYdyT91fZQoaAZoCWgPQwidK0oJQR1gQJSGlFKUaBVN6ANoFkdAi6NnuRcNY3V9lChoBmgJaA9DCHP2zmiraV1AlIaUUpRoFU3oA2gWR0CLpOWGh24edX2UKGgGaAloD0MILsVVZd8nYECUhpRSlGgVTegDaBZHQIu0T8gpz911fZQoaAZoCWgPQwigGFkyx41YQJSGlFKUaBVN6ANoFkdAi7obkGRmsnV9lChoBmgJaA9DCJJbk27LwmJAlIaUUpRoFU3oA2gWR0CLyQ1PWQOndX2UKGgGaAloD0MI4gFlU67MYECUhpRSlGgVTegDaBZHQIvPIA0bcXZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86182d6101e4bccfc2a12431dc3478391ec0b8ea6301358c06c8494c4acc750b
|
3 |
+
size 275443
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 131.3187926655868, "std_reward": 54.4171881820917, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T00:12:13.416749"}
|