damand2061 commited on
Commit
9c34982
·
verified ·
1 Parent(s): 55916e6

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: indobenchmark/indobert-base-p1
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:12800
24
+ - loss:ContrastiveTensionLoss
25
+ widget:
26
+ - source_sentence: Makalah ini diterbitkan dalam format online hanya oleh Metro International.
27
+ sentences:
28
+ - Liga ini berkembang dari tahun 1200 hingga 1500, dan terus menjadi semakin penting
29
+ setelahnya.
30
+ - Ini dirancang oleh orang lain selain WL Bottomley / William Lawrence Bottomley.
31
+ - Lahan tersebut sekarang menjadi Cagar Alam Bentley Priory, sebuah Situs Kepentingan
32
+ Ilmiah Khusus.
33
+ - source_sentence: Pengadilan menentang keputusan tahun 2010 dan kasus ini dilanjutkan
34
+ sesuai dengan manfaatnya.
35
+ sentences:
36
+ - Gunung itu berada di Front Allegheny.
37
+ - Stasiun St Albans Abbey adalah stasiun dalam perjalanan jalur ganda dari stasiun
38
+ Watford Junction.
39
+ - Pada tahun 2011, keluarga Penner tidak lagi menyebut rumah Habitatnya, rumah.
40
+ - source_sentence: Aku tidak jahat dalam hal ini.
41
+ sentences:
42
+ - Awalnya disetujui untuk onchocerciasis dan strongyloidiasis, Ivermectin sekarang
43
+ disetujui oleh FDA untuk pedikulosis.
44
+ - Lagu ini mencapai ARIA Singles Chart Top 100.
45
+ - Bebaskan diri Anda dari permusuhan dan kemarahan untuk menunjukkan rasa hormat
46
+ terhadap tubuh dan kehidupan Anda.
47
+ - source_sentence: Waktu pengiriman sangat cepat.
48
+ sentences:
49
+ - Dia kemudian bermain untuk South West Ham.
50
+ - Qatar, bagaimanapun, tidak diminta untuk mengibarkan bendera Trucial yang ditentukan.
51
+ - Sepasang pintu ini juga meredam suara dari luar.
52
+ - source_sentence: Dengan demikian, seorang model penutur harus mengolah representasi
53
+ warna dalam konteks dan menghasilkan ujaran yang dapat membedakan warna sasaran
54
+ dengan ujaran lainnya.
55
+ sentences:
56
+ - Dia bukan bagian dari American Institute of Architects.
57
+ - Pada tahun 1975 VTL dibeli oleh Greyhound Lines, menjadi anak perusahaan.
58
+ - Pada tanggal 24 April 2009, Forum Terbuka IBIS menyetujui versi 2.0.
59
+ model-index:
60
+ - name: SentenceTransformer based on indobenchmark/indobert-base-p1
61
+ results:
62
+ - task:
63
+ type: semantic-similarity
64
+ name: Semantic Similarity
65
+ dataset:
66
+ name: str dev
67
+ type: str-dev
68
+ metrics:
69
+ - type: pearson_cosine
70
+ value: 0.47668991144701395
71
+ name: Pearson Cosine
72
+ - type: spearman_cosine
73
+ value: 0.48495339068233534
74
+ name: Spearman Cosine
75
+ - type: pearson_manhattan
76
+ value: 0.5041035764250676
77
+ name: Pearson Manhattan
78
+ - type: spearman_manhattan
79
+ value: 0.49270037559673846
80
+ name: Spearman Manhattan
81
+ - type: pearson_euclidean
82
+ value: 0.5059182139447496
83
+ name: Pearson Euclidean
84
+ - type: spearman_euclidean
85
+ value: 0.4915516775931335
86
+ name: Spearman Euclidean
87
+ - type: pearson_dot
88
+ value: 0.2991963739133043
89
+ name: Pearson Dot
90
+ - type: spearman_dot
91
+ value: 0.2630042391245101
92
+ name: Spearman Dot
93
+ - type: pearson_max
94
+ value: 0.5059182139447496
95
+ name: Pearson Max
96
+ - type: spearman_max
97
+ value: 0.49270037559673846
98
+ name: Spearman Max
99
+ - task:
100
+ type: semantic-similarity
101
+ name: Semantic Similarity
102
+ dataset:
103
+ name: str test
104
+ type: str-test
105
+ metrics:
106
+ - type: pearson_cosine
107
+ value: 0.47374249981827143
108
+ name: Pearson Cosine
109
+ - type: spearman_cosine
110
+ value: 0.5083479438750005
111
+ name: Spearman Cosine
112
+ - type: pearson_manhattan
113
+ value: 0.49828227586252527
114
+ name: Pearson Manhattan
115
+ - type: spearman_manhattan
116
+ value: 0.4962152495999787
117
+ name: Spearman Manhattan
118
+ - type: pearson_euclidean
119
+ value: 0.5006486050380166
120
+ name: Pearson Euclidean
121
+ - type: spearman_euclidean
122
+ value: 0.49701891829828837
123
+ name: Spearman Euclidean
124
+ - type: pearson_dot
125
+ value: 0.2573207350736585
126
+ name: Pearson Dot
127
+ - type: spearman_dot
128
+ value: 0.24350607759185028
129
+ name: Spearman Dot
130
+ - type: pearson_max
131
+ value: 0.5006486050380166
132
+ name: Pearson Max
133
+ - type: spearman_max
134
+ value: 0.5083479438750005
135
+ name: Spearman Max
136
+ ---
137
+
138
+ # SentenceTransformer based on indobenchmark/indobert-base-p1
139
+
140
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
141
+
142
+ ## Model Details
143
+
144
+ ### Model Description
145
+ - **Model Type:** Sentence Transformer
146
+ - **Base model:** [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) <!-- at revision c2cd0b51ddce6580eb35263b39b0a1e5fb0a39e2 -->
147
+ - **Maximum Sequence Length:** 32 tokens
148
+ - **Output Dimensionality:** 768 tokens
149
+ - **Similarity Function:** Cosine Similarity
150
+ <!-- - **Training Dataset:** Unknown -->
151
+ <!-- - **Language:** Unknown -->
152
+ <!-- - **License:** Unknown -->
153
+
154
+ ### Model Sources
155
+
156
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
157
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
158
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
159
+
160
+ ### Full Model Architecture
161
+
162
+ ```
163
+ SentenceTransformer(
164
+ (0): Transformer({'max_seq_length': 32, 'do_lower_case': False}) with Transformer model: BertModel
165
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
166
+ )
167
+ ```
168
+
169
+ ## Usage
170
+
171
+ ### Direct Usage (Sentence Transformers)
172
+
173
+ First install the Sentence Transformers library:
174
+
175
+ ```bash
176
+ pip install -U sentence-transformers
177
+ ```
178
+
179
+ Then you can load this model and run inference.
180
+ ```python
181
+ from sentence_transformers import SentenceTransformer
182
+
183
+ # Download from the 🤗 Hub
184
+ model = SentenceTransformer("damand2061/negasibert-ct")
185
+ # Run inference
186
+ sentences = [
187
+ 'Dengan demikian, seorang model penutur harus mengolah representasi warna dalam konteks dan menghasilkan ujaran yang dapat membedakan warna sasaran dengan ujaran lainnya.',
188
+ 'Pada tahun 1975 VTL dibeli oleh Greyhound Lines, menjadi anak perusahaan.',
189
+ 'Pada tanggal 24 April 2009, Forum Terbuka IBIS menyetujui versi 2.0.',
190
+ ]
191
+ embeddings = model.encode(sentences)
192
+ print(embeddings.shape)
193
+ # [3, 768]
194
+
195
+ # Get the similarity scores for the embeddings
196
+ similarities = model.similarity(embeddings, embeddings)
197
+ print(similarities.shape)
198
+ # [3, 3]
199
+ ```
200
+
201
+ <!--
202
+ ### Direct Usage (Transformers)
203
+
204
+ <details><summary>Click to see the direct usage in Transformers</summary>
205
+
206
+ </details>
207
+ -->
208
+
209
+ <!--
210
+ ### Downstream Usage (Sentence Transformers)
211
+
212
+ You can finetune this model on your own dataset.
213
+
214
+ <details><summary>Click to expand</summary>
215
+
216
+ </details>
217
+ -->
218
+
219
+ <!--
220
+ ### Out-of-Scope Use
221
+
222
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
223
+ -->
224
+
225
+ ## Evaluation
226
+
227
+ ### Metrics
228
+
229
+ #### Semantic Similarity
230
+ * Dataset: `str-dev`
231
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
232
+
233
+ | Metric | Value |
234
+ |:-------------------|:-----------|
235
+ | pearson_cosine | 0.4767 |
236
+ | spearman_cosine | 0.485 |
237
+ | pearson_manhattan | 0.5041 |
238
+ | spearman_manhattan | 0.4927 |
239
+ | pearson_euclidean | 0.5059 |
240
+ | spearman_euclidean | 0.4916 |
241
+ | pearson_dot | 0.2992 |
242
+ | spearman_dot | 0.263 |
243
+ | pearson_max | 0.5059 |
244
+ | **spearman_max** | **0.4927** |
245
+
246
+ #### Semantic Similarity
247
+ * Dataset: `str-test`
248
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
249
+
250
+ | Metric | Value |
251
+ |:-------------------|:-----------|
252
+ | pearson_cosine | 0.4737 |
253
+ | spearman_cosine | 0.5083 |
254
+ | pearson_manhattan | 0.4983 |
255
+ | spearman_manhattan | 0.4962 |
256
+ | pearson_euclidean | 0.5006 |
257
+ | spearman_euclidean | 0.497 |
258
+ | pearson_dot | 0.2573 |
259
+ | spearman_dot | 0.2435 |
260
+ | pearson_max | 0.5006 |
261
+ | **spearman_max** | **0.5083** |
262
+
263
+ <!--
264
+ ## Bias, Risks and Limitations
265
+
266
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
267
+ -->
268
+
269
+ <!--
270
+ ### Recommendations
271
+
272
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
273
+ -->
274
+
275
+ ## Training Details
276
+
277
+ ### Training Dataset
278
+
279
+ #### Unnamed Dataset
280
+
281
+
282
+ * Size: 12,800 training samples
283
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
284
+ * Approximate statistics based on the first 1000 samples:
285
+ | | sentence_0 | sentence_1 | label |
286
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
287
+ | type | string | string | int |
288
+ | details | <ul><li>min: 5 tokens</li><li>mean: 14.81 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.92 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>0: ~87.50%</li><li>1: ~12.50%</li></ul> |
289
+ * Samples:
290
+ | sentence_0 | sentence_1 | label |
291
+ |:-------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------|
292
+ | <code>Warnanya tercermin pada corak dan lambang universitas kota tersebut.</code> | <code>Warnanya tercermin pada corak dan lambang universitas kota tersebut.</code> | <code>1</code> |
293
+ | <code>Pada awal tahun 2008, Ikerbasque menolak menugaskan Enrique Zuazua.</code> | <code>Oh, ayolah, itu adil.</code> | <code>0</code> |
294
+ | <code>Pada tahun 2006, sebuah studi diselesaikan tentang prospek jalur Scarborough.</code> | <code>Jurnal Pendidikan Modern didirikan olehnya.</code> | <code>0</code> |
295
+ * Loss: [<code>ContrastiveTensionLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastivetensionloss)
296
+
297
+ ### Training Hyperparameters
298
+ #### Non-Default Hyperparameters
299
+
300
+ - `per_device_train_batch_size`: 64
301
+ - `per_device_eval_batch_size`: 64
302
+ - `num_train_epochs`: 5
303
+ - `multi_dataset_batch_sampler`: round_robin
304
+
305
+ #### All Hyperparameters
306
+ <details><summary>Click to expand</summary>
307
+
308
+ - `overwrite_output_dir`: False
309
+ - `do_predict`: False
310
+ - `eval_strategy`: no
311
+ - `prediction_loss_only`: True
312
+ - `per_device_train_batch_size`: 64
313
+ - `per_device_eval_batch_size`: 64
314
+ - `per_gpu_train_batch_size`: None
315
+ - `per_gpu_eval_batch_size`: None
316
+ - `gradient_accumulation_steps`: 1
317
+ - `eval_accumulation_steps`: None
318
+ - `torch_empty_cache_steps`: None
319
+ - `learning_rate`: 5e-05
320
+ - `weight_decay`: 0.0
321
+ - `adam_beta1`: 0.9
322
+ - `adam_beta2`: 0.999
323
+ - `adam_epsilon`: 1e-08
324
+ - `max_grad_norm`: 1
325
+ - `num_train_epochs`: 5
326
+ - `max_steps`: -1
327
+ - `lr_scheduler_type`: linear
328
+ - `lr_scheduler_kwargs`: {}
329
+ - `warmup_ratio`: 0.0
330
+ - `warmup_steps`: 0
331
+ - `log_level`: passive
332
+ - `log_level_replica`: warning
333
+ - `log_on_each_node`: True
334
+ - `logging_nan_inf_filter`: True
335
+ - `save_safetensors`: True
336
+ - `save_on_each_node`: False
337
+ - `save_only_model`: False
338
+ - `restore_callback_states_from_checkpoint`: False
339
+ - `no_cuda`: False
340
+ - `use_cpu`: False
341
+ - `use_mps_device`: False
342
+ - `seed`: 42
343
+ - `data_seed`: None
344
+ - `jit_mode_eval`: False
345
+ - `use_ipex`: False
346
+ - `bf16`: False
347
+ - `fp16`: False
348
+ - `fp16_opt_level`: O1
349
+ - `half_precision_backend`: auto
350
+ - `bf16_full_eval`: False
351
+ - `fp16_full_eval`: False
352
+ - `tf32`: None
353
+ - `local_rank`: 0
354
+ - `ddp_backend`: None
355
+ - `tpu_num_cores`: None
356
+ - `tpu_metrics_debug`: False
357
+ - `debug`: []
358
+ - `dataloader_drop_last`: False
359
+ - `dataloader_num_workers`: 0
360
+ - `dataloader_prefetch_factor`: None
361
+ - `past_index`: -1
362
+ - `disable_tqdm`: False
363
+ - `remove_unused_columns`: True
364
+ - `label_names`: None
365
+ - `load_best_model_at_end`: False
366
+ - `ignore_data_skip`: False
367
+ - `fsdp`: []
368
+ - `fsdp_min_num_params`: 0
369
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
370
+ - `fsdp_transformer_layer_cls_to_wrap`: None
371
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
372
+ - `deepspeed`: None
373
+ - `label_smoothing_factor`: 0.0
374
+ - `optim`: adamw_torch
375
+ - `optim_args`: None
376
+ - `adafactor`: False
377
+ - `group_by_length`: False
378
+ - `length_column_name`: length
379
+ - `ddp_find_unused_parameters`: None
380
+ - `ddp_bucket_cap_mb`: None
381
+ - `ddp_broadcast_buffers`: False
382
+ - `dataloader_pin_memory`: True
383
+ - `dataloader_persistent_workers`: False
384
+ - `skip_memory_metrics`: True
385
+ - `use_legacy_prediction_loop`: False
386
+ - `push_to_hub`: False
387
+ - `resume_from_checkpoint`: None
388
+ - `hub_model_id`: None
389
+ - `hub_strategy`: every_save
390
+ - `hub_private_repo`: False
391
+ - `hub_always_push`: False
392
+ - `gradient_checkpointing`: False
393
+ - `gradient_checkpointing_kwargs`: None
394
+ - `include_inputs_for_metrics`: False
395
+ - `eval_do_concat_batches`: True
396
+ - `fp16_backend`: auto
397
+ - `push_to_hub_model_id`: None
398
+ - `push_to_hub_organization`: None
399
+ - `mp_parameters`:
400
+ - `auto_find_batch_size`: False
401
+ - `full_determinism`: False
402
+ - `torchdynamo`: None
403
+ - `ray_scope`: last
404
+ - `ddp_timeout`: 1800
405
+ - `torch_compile`: False
406
+ - `torch_compile_backend`: None
407
+ - `torch_compile_mode`: None
408
+ - `dispatch_batches`: None
409
+ - `split_batches`: None
410
+ - `include_tokens_per_second`: False
411
+ - `include_num_input_tokens_seen`: False
412
+ - `neftune_noise_alpha`: None
413
+ - `optim_target_modules`: None
414
+ - `batch_eval_metrics`: False
415
+ - `eval_on_start`: False
416
+ - `eval_use_gather_object`: False
417
+ - `batch_sampler`: batch_sampler
418
+ - `multi_dataset_batch_sampler`: round_robin
419
+
420
+ </details>
421
+
422
+ ### Training Logs
423
+ | Epoch | Step | Training Loss | str-dev_spearman_max | str-test_spearman_max |
424
+ |:-----:|:----:|:-------------:|:--------------------:|:---------------------:|
425
+ | 1.0 | 200 | - | 0.5009 | 0.5084 |
426
+ | 2.0 | 400 | - | 0.4926 | 0.5025 |
427
+ | 2.5 | 500 | 2328.8573 | - | - |
428
+ | 3.0 | 600 | - | 0.4909 | 0.5058 |
429
+ | 4.0 | 800 | - | 0.4909 | 0.5064 |
430
+ | 5.0 | 1000 | 0.5625 | 0.4927 | 0.5083 |
431
+
432
+
433
+ ### Framework Versions
434
+ - Python: 3.10.14
435
+ - Sentence Transformers: 3.0.1
436
+ - Transformers: 4.44.0
437
+ - PyTorch: 2.4.0
438
+ - Accelerate: 0.33.0
439
+ - Datasets: 2.21.0
440
+ - Tokenizers: 0.19.1
441
+
442
+ ## Citation
443
+
444
+ ### BibTeX
445
+
446
+ #### Sentence Transformers
447
+ ```bibtex
448
+ @inproceedings{reimers-2019-sentence-bert,
449
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
450
+ author = "Reimers, Nils and Gurevych, Iryna",
451
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
452
+ month = "11",
453
+ year = "2019",
454
+ publisher = "Association for Computational Linguistics",
455
+ url = "https://arxiv.org/abs/1908.10084",
456
+ }
457
+ ```
458
+
459
+ #### ContrastiveTensionLoss
460
+ ```bibtex
461
+ @inproceedings{carlsson2021semantic,
462
+ title={Semantic Re-tuning with Contrastive Tension},
463
+ author={Fredrik Carlsson and Amaru Cuba Gyllensten and Evangelia Gogoulou and Erik Ylip{"a}{"a} Hellqvist and Magnus Sahlgren},
464
+ booktitle={International Conference on Learning Representations},
465
+ year={2021},
466
+ url={https://openreview.net/forum?id=Ov_sMNau-PF}
467
+ }
468
+ ```
469
+
470
+ <!--
471
+ ## Glossary
472
+
473
+ *Clearly define terms in order to be accessible across audiences.*
474
+ -->
475
+
476
+ <!--
477
+ ## Model Card Authors
478
+
479
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
480
+ -->
481
+
482
+ <!--
483
+ ## Model Card Contact
484
+
485
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
486
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "indobenchmark/indobert-base-p1",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.44.0",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 50000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.4.0"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d6e48fd4f8dddfd748556cea11d6f9ad3bebd17b5c94da7073f78d59d943358
3
+ size 497787752
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 32,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 32,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff