Commit
·
f83f013
1
Parent(s):
325582a
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 137.66 +/- 94.84
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f05b86f8200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f05b86f8290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f05b86f8320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f05b86f83b0>", "_build": "<function ActorCriticPolicy._build at 0x7f05b86f8440>", "forward": "<function ActorCriticPolicy.forward at 0x7f05b86f84d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f05b86f8560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f05b86f85f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f05b86f8680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f05b86f8710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f05b86f87a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f05b86b9c00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652128983.7121515, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbwmr0UiJS6eYuGO0pApjgJdGe6sL4eugAAgD8AAIA/swfFPUj3obprFF66YcRCtuw1vLpA6X85AACAPwAAgD/mhyS9uKbeuS6BTLzn5zq8TLq0ul9uI70AAAAAAACAP7POtD6v9zY9WjXeuwzInLqWsWE+8ufeugAAgD8AAIA/jZOEPuh9+bxLsAY8v4tTunteYr7SaCC7AACAPwAAgD9aY8k+vd/6PjC4Mj7c442+IV4bPhv6Vz0AAAAAAAAAAMb4fD70FZO8VZGJu4cRrTmNMwO+tiWnOgAAgD8AAIA/AKgFu+GqlLpdnRU8lDPpNe1k6DqDFeQ0AACAPwAAgD/wtUo/l2RJvv9oP7uxawe6Ca6oPnocArsAAIA/AACAPxvvnL7sybC7FUjSO8m/ATmLqOo85gVCNQAAgD8AAIA/AMjmPcPVIjtSKRI8FM8zPZ1HObyuvAi+AAAAAAAAAAAONqe+KYwgP8Y3Bj4fpdy+D1eSvt3HID4AAAAAAAAAAG79pr594w+9n7/HOjo0RjmAaEE+RlH4uQAAgD8AAIA/Y62RPuGW27qzrYG72fIyvizhDDvIydI7AAAAAAAAAACGzyk+Uoy6u3mkwLwjY9y9Dzc2PjdNvj4AAIA/AACAPw12+j2Fa6+5BQ/sOZUDYbZvxnE7K0AIuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ3IycaucV0CUhpRSlIwBbJRN6AOMAXSUR0CL1+tWdVebdX2UKGgGaAloD0MIUwjkEkf8WECUhpRSlGgVTegDaBZHQIvdWuieumt1fZQoaAZoCWgPQwiWeauuQx5iQJSGlFKUaBVN6ANoFkdAi94/qPfbbnV9lChoBmgJaA9DCO//44QJo8E/lIaUUpRoFUupaBZHQIvhON5t3wF1fZQoaAZoCWgPQwhPzHoxlKFbQJSGlFKUaBVN6ANoFkdAjBRNpdrwfHV9lChoBmgJaA9DCKn4vyOq5GZAlIaUUpRoFU3oA2gWR0CMF7nV5KODdX2UKGgGaAloD0MIMSjTaHJhVUCUhpRSlGgVTegDaBZHQIwiTPD50r91fZQoaAZoCWgPQwiQaAJFLJhYQJSGlFKUaBVN6ANoFkdAjCa/jS5RTHV9lChoBmgJaA9DCBbaOc0CaVxAlIaUUpRoFU3oA2gWR0CMKL7tzCDVdX2UKGgGaAloD0MIz/QSY5lYZECUhpRSlGgVTegDaBZHQIw1x/NJOFh1fZQoaAZoCWgPQwg+IqZEEodlQJSGlFKUaBVN6ANoFkdAjDd6uOjqOnV9lChoBmgJaA9DCN9rCI7LdkRAlIaUUpRoFUvPaBZHQIxBRh2GIsR1fZQoaAZoCWgPQwhighq+hdphQJSGlFKUaBVN6ANoFkdAjEeKG+K0lnV9lChoBmgJaA9DCJcaoZ+pzyrAlIaUUpRoFUvVaBZHQIxSOclPact1fZQoaAZoCWgPQwg/VYUGYgJZQJSGlFKUaBVN6ANoFkdAjFSckt29tnV9lChoBmgJaA9DCCRiSiTRy8Q/lIaUUpRoFUvtaBZHQIxXK8jAzpJ1fZQoaAZoCWgPQwg7Vik90ytSQJSGlFKUaBVN6ANoFkdAjFh7gjyFwnV9lChoBmgJaA9DCGCt2jWhv2BAlIaUUpRoFU3oA2gWR0CMcAQRPGhmdX2UKGgGaAloD0MIQQ5KmGklQ0CUhpRSlGgVS8poFkdAjHLPk7wKB3V9lChoBmgJaA9DCPt5U5EKMFpAlIaUUpRoFU3oA2gWR0CMfChHLA58dX2UKGgGaAloD0MIfH+D9mqpYECUhpRSlGgVTegDaBZHQIx/TgsK9f11fZQoaAZoCWgPQwieQq7UswdWQJSGlFKUaBVN6ANoFkdAjIXakhzNlnV9lChoBmgJaA9DCD56w33kyl1AlIaUUpRoFU3oA2gWR0CMhvINEw36dX2UKGgGaAloD0MItYzUeyryX0CUhpRSlGgVTegDaBZHQIyKn3ztkWh1fZQoaAZoCWgPQwjaqiSyD+BPQJSGlFKUaBVL0WgWR0CMvNLHuJDWdX2UKGgGaAloD0MIRiV1AproYECUhpRSlGgVTegDaBZHQIy9b8pCrtF1fZQoaAZoCWgPQwiTVRFuMu9ZQJSGlFKUaBVN6ANoFkdAjMEg4ffXPXV9lChoBmgJaA9DCHQn2H+dGVlAlIaUUpRoFU3oA2gWR0CMy6aS9ugpdX2UKGgGaAloD0MI2IFzRpRHYECUhpRSlGgVTegDaBZHQIzSVM/QjUx1fZQoaAZoCWgPQwh8KxIT1I5XQJSGlFKUaBVN6ANoFkdAjOymMn7YTXV9lChoBmgJaA9DCMNHxJRI2lVAlIaUUpRoFU3oA2gWR0CM82jlgc94dX2UKGgGaAloD0MIIPEr1vBlYECUhpRSlGgVTegDaBZHQIz+sEcKgI11fZQoaAZoCWgPQwi1FfvL7qpnQJSGlFKUaBVN6ANoFkdAjQEJfYzzmXV9lChoBmgJaA9DCCRfCaRE6mRAlIaUUpRoFU3oA2gWR0CNBP0163RYdX2UKGgGaAloD0MI1F+vsOD+AsCUhpRSlGgVS99oFkdAjQuWXkYGdXV9lChoBmgJaA9DCHRDU3Z652BAlIaUUpRoFU3oA2gWR0CNHDTJhfBvdX2UKGgGaAloD0MIrKsCtRi4YkCUhpRSlGgVTegDaBZHQI0e0Zzgdfd1fZQoaAZoCWgPQwid9/9xwiQ/QJSGlFKUaBVL22gWR0CNIlU3GXHBdX2UKGgGaAloD0MIC34bYryHWUCUhpRSlGgVTegDaBZHQI0qSbF0gbJ1fZQoaAZoCWgPQwhPdcjNcKJbQJSGlFKUaBVN6ANoFkdAjTB1QhwEQ3V9lChoBmgJaA9DCDZWYp6V519AlIaUUpRoFU3oA2gWR0CNMXetSydGdX2UKGgGaAloD0MILPNWXQcgY0CUhpRSlGgVTegDaBZHQI01CjL0SRN1fZQoaAZoCWgPQwjBjClYY8tiQJSGlFKUaBVN6ANoFkdAjUEQyRB/qnV9lChoBmgJaA9DCP3AVZ7As2JAlIaUUpRoFU3oA2gWR0CNQZENvwVkdX2UKGgGaAloD0MIieyDLAtIT0CUhpRSlGgVS8ZoFkdAjUJRK6FuenV9lChoBmgJaA9DCML4adyb9F5AlIaUUpRoFU3oA2gWR0CNanyo4uK5dX2UKGgGaAloD0MIjWMke4T2M0CUhpRSlGgVS7RoFkdAjWs526kIonV9lChoBmgJaA9DCCL99nXgimVAlIaUUpRoFU3oA2gWR0CNcuLGaQV9dX2UKGgGaAloD0MIdopVgzByXECUhpRSlGgVTegDaBZHQI138KTjebd1fZQoaAZoCWgPQwjICKhwBF09QJSGlFKUaBVL3WgWR0CNkt0XgtOEdX2UKGgGaAloD0MI6MByhAyOXkCUhpRSlGgVTegDaBZHQI2VOQQtjCp1fZQoaAZoCWgPQwhwRPesa3dmQJSGlFKUaBVN6ANoFkdAjZ+7ah6By3V9lChoBmgJaA9DCHB6F+/HsGBAlIaUUpRoFU3oA2gWR0CNofdznzQNdX2UKGgGaAloD0MIIm3jT9RXYECUhpRSlGgVTegDaBZHQI2se7xusLh1fZQoaAZoCWgPQwhMNEjBUxAqwJSGlFKUaBVL52gWR0CNsy9g4OtodX2UKGgGaAloD0MIb0VighqTYUCUhpRSlGgVTegDaBZHQI28Dk6tDD11fZQoaAZoCWgPQwiMZmX7EOdiQJSGlFKUaBVN6ANoFkdAjb5iZOSGJ3V9lChoBmgJaA9DCFga+FEN+2FAlIaUUpRoFU3oA2gWR0CNwXrB0p3HdX2UKGgGaAloD0MIXcDLDBvSZUCUhpRSlGgVTegDaBZHQI3PcsMAmzB1fZQoaAZoCWgPQwhEv7Z++q1dQJSGlFKUaBVN6ANoFkdAjdMdpItlI3V9lChoBmgJaA9DCNBjlGdeDhBAlIaUUpRoFUu7aBZHQI3U3MbFS891fZQoaAZoCWgPQwg0ZacfVBFiQJSGlFKUaBVN6ANoFkdAjd976pHZsnV9lChoBmgJaA9DCA4TDVLwT15AlIaUUpRoFU3oA2gWR0CN3/60pmVadX2UKGgGaAloD0MIILWJk/sKVUCUhpRSlGgVTegDaBZHQI3gvgeii7F1fZQoaAZoCWgPQwiWJM/1fbhhQJSGlFKUaBVN6ANoFkdAjeL2UB4lhXV9lChoBmgJaA9DCJ56pMFtm2JAlIaUUpRoFU3oA2gWR0CN474B3iaRdX2UKGgGaAloD0MIdvpBXaTMZUCUhpRSlGgVTegDaBZHQI4QzH2h7E51fZQoaAZoCWgPQwjaVx6kp+BFQJSGlFKUaBVLyGgWR0COGYZiuuA7dX2UKGgGaAloD0MIDCHn/X/sG8CUhpRSlGgVS8hoFkdAjhv5xzaK13V9lChoBmgJaA9DCLzK2qZ4zC3AlIaUUpRoFUvbaBZHQI4e6shgVoJ1fZQoaAZoCWgPQwiMEB5tnFdgQJSGlFKUaBVN6ANoFkdAji7DmSyMUHV9lChoBmgJaA9DCJChYwcVD2FAlIaUUpRoFU3oA2gWR0COOsrWAf+1dX2UKGgGaAloD0MIoFIlyt4aLsCUhpRSlGgVS/BoFkdAjjx6guh9LHV9lChoBmgJaA9DCI/9LJYikFRAlIaUUpRoFU3oA2gWR0COPP/smfGudX2UKGgGaAloD0MIaFn3j4UkW0CUhpRSlGgVTegDaBZHQI5GWRFI/aB1fZQoaAZoCWgPQwiUSnhCL35iQJSGlFKUaBVN6ANoFkdAjkzjn/1g6XV9lChoBmgJaA9DCEMaFTjZVlxAlIaUUpRoFU3oA2gWR0COVPRhMJyAdX2UKGgGaAloD0MIxqUqbXElYkCUhpRSlGgVTegDaBZHQI5aesRxtHh1fZQoaAZoCWgPQwi5/fLJihtcQJSGlFKUaBVN6ANoFkdAjmhkCV8kU3V9lChoBmgJaA9DCE8fgT/8iF9AlIaUUpRoFU3oA2gWR0CObGOG0u14dX2UKGgGaAloD0MIrIvbaAC6Y0CUhpRSlGgVTegDaBZHQI5uCL61stV1fZQoaAZoCWgPQwhbC7PQzjkbwJSGlFKUaBVL0mgWR0CObnzS1E3LdX2UKGgGaAloD0MIuamB5vMQYkCUhpRSlGgVTegDaBZHQI539uzhP0t1fZQoaAZoCWgPQwjwp8ZLN85fQJSGlFKUaBVN6ANoFkdAjnhoQnQY13V9lChoBmgJaA9DCP59xoUDCSxAlIaUUpRoFUu7aBZHQI6okKG+K0l1fZQoaAZoCWgPQwifceFASPJQQJSGlFKUaBVN6ANoFkdAjqrDFId2gXV9lChoBmgJaA9DCLprCfmgamRAlIaUUpRoFU3oA2gWR0COtgRZlnRLdX2UKGgGaAloD0MI/plBfGA0XUCUhpRSlGgVTegDaBZHQI64pOzposZ1fZQoaAZoCWgPQwifc7frpakvQJSGlFKUaBVNpgFoFkdAjsWUKZ2IPHV9lChoBmgJaA9DCJQ0f0zrcGBAlIaUUpRoFU3oA2gWR0COy/1FH8TBdX2UKGgGaAloD0MIjA+zl22/YkCUhpRSlGgVTegDaBZHQI7XxyXD3uh1fZQoaAZoCWgPQwj4im69JoRkQJSGlFKUaBVNiANoFkdAjtgFsxfv4XV9lChoBmgJaA9DCIoFvqJbG1NAlIaUUpRoFU3oA2gWR0CO2S+sYEW7dX2UKGgGaAloD0MIN9+I7tlxYUCUhpRSlGgVTegDaBZHQI7ZkzsQd0d1fZQoaAZoCWgPQwj/BYIAGTlhQJSGlFKUaBVN6ANoFkdAjucDuKGcnXV9lChoBmgJaA9DCB1WuOUjnVlAlIaUUpRoFU3oA2gWR0CO9DFDv3JxdX2UKGgGaAloD0MIrhIsDucDYUCUhpRSlGgVTegDaBZHQI8Ct8w5/9Z1fZQoaAZoCWgPQwhLOsrBbMJiQJSGlFKUaBVN6ANoFkdAjwZ7LMcIaHV9lChoBmgJaA9DCL4Ts14Mw1hAlIaUUpRoFU3oA2gWR0CPEqJjUd7wdX2UKGgGaAloD0MIy52ZYDjaVUCUhpRSlGgVTegDaBZHQI8THxMFlkJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b0d98d419c9726f4d2945ef9e3fc175649c544a4d9fa8d8739b2b00b5f97662
|
3 |
+
size 144024
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f05b86f8200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f05b86f8290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f05b86f8320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f05b86f83b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f05b86f8440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f05b86f84d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f05b86f8560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f05b86f85f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f05b86f8680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f05b86f8710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f05b86f87a0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f05b86b9c00>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652128983.7121515,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKbwmr0UiJS6eYuGO0pApjgJdGe6sL4eugAAgD8AAIA/swfFPUj3obprFF66YcRCtuw1vLpA6X85AACAPwAAgD/mhyS9uKbeuS6BTLzn5zq8TLq0ul9uI70AAAAAAACAP7POtD6v9zY9WjXeuwzInLqWsWE+8ufeugAAgD8AAIA/jZOEPuh9+bxLsAY8v4tTunteYr7SaCC7AACAPwAAgD9aY8k+vd/6PjC4Mj7c442+IV4bPhv6Vz0AAAAAAAAAAMb4fD70FZO8VZGJu4cRrTmNMwO+tiWnOgAAgD8AAIA/AKgFu+GqlLpdnRU8lDPpNe1k6DqDFeQ0AACAPwAAgD/wtUo/l2RJvv9oP7uxawe6Ca6oPnocArsAAIA/AACAPxvvnL7sybC7FUjSO8m/ATmLqOo85gVCNQAAgD8AAIA/AMjmPcPVIjtSKRI8FM8zPZ1HObyuvAi+AAAAAAAAAAAONqe+KYwgP8Y3Bj4fpdy+D1eSvt3HID4AAAAAAAAAAG79pr594w+9n7/HOjo0RjmAaEE+RlH4uQAAgD8AAIA/Y62RPuGW27qzrYG72fIyvizhDDvIydI7AAAAAAAAAACGzyk+Uoy6u3mkwLwjY9y9Dzc2PjdNvj4AAIA/AACAPw12+j2Fa6+5BQ/sOZUDYbZvxnE7K0AIuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQ3IycaucV0CUhpRSlIwBbJRN6AOMAXSUR0CL1+tWdVebdX2UKGgGaAloD0MIUwjkEkf8WECUhpRSlGgVTegDaBZHQIvdWuieumt1fZQoaAZoCWgPQwiWeauuQx5iQJSGlFKUaBVN6ANoFkdAi94/qPfbbnV9lChoBmgJaA9DCO//44QJo8E/lIaUUpRoFUupaBZHQIvhON5t3wF1fZQoaAZoCWgPQwhPzHoxlKFbQJSGlFKUaBVN6ANoFkdAjBRNpdrwfHV9lChoBmgJaA9DCKn4vyOq5GZAlIaUUpRoFU3oA2gWR0CMF7nV5KODdX2UKGgGaAloD0MIMSjTaHJhVUCUhpRSlGgVTegDaBZHQIwiTPD50r91fZQoaAZoCWgPQwiQaAJFLJhYQJSGlFKUaBVN6ANoFkdAjCa/jS5RTHV9lChoBmgJaA9DCBbaOc0CaVxAlIaUUpRoFU3oA2gWR0CMKL7tzCDVdX2UKGgGaAloD0MIz/QSY5lYZECUhpRSlGgVTegDaBZHQIw1x/NJOFh1fZQoaAZoCWgPQwg+IqZEEodlQJSGlFKUaBVN6ANoFkdAjDd6uOjqOnV9lChoBmgJaA9DCN9rCI7LdkRAlIaUUpRoFUvPaBZHQIxBRh2GIsR1fZQoaAZoCWgPQwhighq+hdphQJSGlFKUaBVN6ANoFkdAjEeKG+K0lnV9lChoBmgJaA9DCJcaoZ+pzyrAlIaUUpRoFUvVaBZHQIxSOclPact1fZQoaAZoCWgPQwg/VYUGYgJZQJSGlFKUaBVN6ANoFkdAjFSckt29tnV9lChoBmgJaA9DCCRiSiTRy8Q/lIaUUpRoFUvtaBZHQIxXK8jAzpJ1fZQoaAZoCWgPQwg7Vik90ytSQJSGlFKUaBVN6ANoFkdAjFh7gjyFwnV9lChoBmgJaA9DCGCt2jWhv2BAlIaUUpRoFU3oA2gWR0CMcAQRPGhmdX2UKGgGaAloD0MIQQ5KmGklQ0CUhpRSlGgVS8poFkdAjHLPk7wKB3V9lChoBmgJaA9DCPt5U5EKMFpAlIaUUpRoFU3oA2gWR0CMfChHLA58dX2UKGgGaAloD0MIfH+D9mqpYECUhpRSlGgVTegDaBZHQIx/TgsK9f11fZQoaAZoCWgPQwieQq7UswdWQJSGlFKUaBVN6ANoFkdAjIXakhzNlnV9lChoBmgJaA9DCD56w33kyl1AlIaUUpRoFU3oA2gWR0CMhvINEw36dX2UKGgGaAloD0MItYzUeyryX0CUhpRSlGgVTegDaBZHQIyKn3ztkWh1fZQoaAZoCWgPQwjaqiSyD+BPQJSGlFKUaBVL0WgWR0CMvNLHuJDWdX2UKGgGaAloD0MIRiV1AproYECUhpRSlGgVTegDaBZHQIy9b8pCrtF1fZQoaAZoCWgPQwiTVRFuMu9ZQJSGlFKUaBVN6ANoFkdAjMEg4ffXPXV9lChoBmgJaA9DCHQn2H+dGVlAlIaUUpRoFU3oA2gWR0CMy6aS9ugpdX2UKGgGaAloD0MI2IFzRpRHYECUhpRSlGgVTegDaBZHQIzSVM/QjUx1fZQoaAZoCWgPQwh8KxIT1I5XQJSGlFKUaBVN6ANoFkdAjOymMn7YTXV9lChoBmgJaA9DCMNHxJRI2lVAlIaUUpRoFU3oA2gWR0CM82jlgc94dX2UKGgGaAloD0MIIPEr1vBlYECUhpRSlGgVTegDaBZHQIz+sEcKgI11fZQoaAZoCWgPQwi1FfvL7qpnQJSGlFKUaBVN6ANoFkdAjQEJfYzzmXV9lChoBmgJaA9DCCRfCaRE6mRAlIaUUpRoFU3oA2gWR0CNBP0163RYdX2UKGgGaAloD0MI1F+vsOD+AsCUhpRSlGgVS99oFkdAjQuWXkYGdXV9lChoBmgJaA9DCHRDU3Z652BAlIaUUpRoFU3oA2gWR0CNHDTJhfBvdX2UKGgGaAloD0MIrKsCtRi4YkCUhpRSlGgVTegDaBZHQI0e0Zzgdfd1fZQoaAZoCWgPQwid9/9xwiQ/QJSGlFKUaBVL22gWR0CNIlU3GXHBdX2UKGgGaAloD0MIC34bYryHWUCUhpRSlGgVTegDaBZHQI0qSbF0gbJ1fZQoaAZoCWgPQwhPdcjNcKJbQJSGlFKUaBVN6ANoFkdAjTB1QhwEQ3V9lChoBmgJaA9DCDZWYp6V519AlIaUUpRoFU3oA2gWR0CNMXetSydGdX2UKGgGaAloD0MILPNWXQcgY0CUhpRSlGgVTegDaBZHQI01CjL0SRN1fZQoaAZoCWgPQwjBjClYY8tiQJSGlFKUaBVN6ANoFkdAjUEQyRB/qnV9lChoBmgJaA9DCP3AVZ7As2JAlIaUUpRoFU3oA2gWR0CNQZENvwVkdX2UKGgGaAloD0MIieyDLAtIT0CUhpRSlGgVS8ZoFkdAjUJRK6FuenV9lChoBmgJaA9DCML4adyb9F5AlIaUUpRoFU3oA2gWR0CNanyo4uK5dX2UKGgGaAloD0MIjWMke4T2M0CUhpRSlGgVS7RoFkdAjWs526kIonV9lChoBmgJaA9DCCL99nXgimVAlIaUUpRoFU3oA2gWR0CNcuLGaQV9dX2UKGgGaAloD0MIdopVgzByXECUhpRSlGgVTegDaBZHQI138KTjebd1fZQoaAZoCWgPQwjICKhwBF09QJSGlFKUaBVL3WgWR0CNkt0XgtOEdX2UKGgGaAloD0MI6MByhAyOXkCUhpRSlGgVTegDaBZHQI2VOQQtjCp1fZQoaAZoCWgPQwhwRPesa3dmQJSGlFKUaBVN6ANoFkdAjZ+7ah6By3V9lChoBmgJaA9DCHB6F+/HsGBAlIaUUpRoFU3oA2gWR0CNofdznzQNdX2UKGgGaAloD0MIIm3jT9RXYECUhpRSlGgVTegDaBZHQI2se7xusLh1fZQoaAZoCWgPQwhMNEjBUxAqwJSGlFKUaBVL52gWR0CNsy9g4OtodX2UKGgGaAloD0MIb0VighqTYUCUhpRSlGgVTegDaBZHQI28Dk6tDD11fZQoaAZoCWgPQwiMZmX7EOdiQJSGlFKUaBVN6ANoFkdAjb5iZOSGJ3V9lChoBmgJaA9DCFga+FEN+2FAlIaUUpRoFU3oA2gWR0CNwXrB0p3HdX2UKGgGaAloD0MIXcDLDBvSZUCUhpRSlGgVTegDaBZHQI3PcsMAmzB1fZQoaAZoCWgPQwhEv7Z++q1dQJSGlFKUaBVN6ANoFkdAjdMdpItlI3V9lChoBmgJaA9DCNBjlGdeDhBAlIaUUpRoFUu7aBZHQI3U3MbFS891fZQoaAZoCWgPQwg0ZacfVBFiQJSGlFKUaBVN6ANoFkdAjd976pHZsnV9lChoBmgJaA9DCA4TDVLwT15AlIaUUpRoFU3oA2gWR0CN3/60pmVadX2UKGgGaAloD0MIILWJk/sKVUCUhpRSlGgVTegDaBZHQI3gvgeii7F1fZQoaAZoCWgPQwiWJM/1fbhhQJSGlFKUaBVN6ANoFkdAjeL2UB4lhXV9lChoBmgJaA9DCJ56pMFtm2JAlIaUUpRoFU3oA2gWR0CN474B3iaRdX2UKGgGaAloD0MIdvpBXaTMZUCUhpRSlGgVTegDaBZHQI4QzH2h7E51fZQoaAZoCWgPQwjaVx6kp+BFQJSGlFKUaBVLyGgWR0COGYZiuuA7dX2UKGgGaAloD0MIDCHn/X/sG8CUhpRSlGgVS8hoFkdAjhv5xzaK13V9lChoBmgJaA9DCLzK2qZ4zC3AlIaUUpRoFUvbaBZHQI4e6shgVoJ1fZQoaAZoCWgPQwiMEB5tnFdgQJSGlFKUaBVN6ANoFkdAji7DmSyMUHV9lChoBmgJaA9DCJChYwcVD2FAlIaUUpRoFU3oA2gWR0COOsrWAf+1dX2UKGgGaAloD0MIoFIlyt4aLsCUhpRSlGgVS/BoFkdAjjx6guh9LHV9lChoBmgJaA9DCI/9LJYikFRAlIaUUpRoFU3oA2gWR0COPP/smfGudX2UKGgGaAloD0MIaFn3j4UkW0CUhpRSlGgVTegDaBZHQI5GWRFI/aB1fZQoaAZoCWgPQwiUSnhCL35iQJSGlFKUaBVN6ANoFkdAjkzjn/1g6XV9lChoBmgJaA9DCEMaFTjZVlxAlIaUUpRoFU3oA2gWR0COVPRhMJyAdX2UKGgGaAloD0MIxqUqbXElYkCUhpRSlGgVTegDaBZHQI5aesRxtHh1fZQoaAZoCWgPQwi5/fLJihtcQJSGlFKUaBVN6ANoFkdAjmhkCV8kU3V9lChoBmgJaA9DCE8fgT/8iF9AlIaUUpRoFU3oA2gWR0CObGOG0u14dX2UKGgGaAloD0MIrIvbaAC6Y0CUhpRSlGgVTegDaBZHQI5uCL61stV1fZQoaAZoCWgPQwhbC7PQzjkbwJSGlFKUaBVL0mgWR0CObnzS1E3LdX2UKGgGaAloD0MIuamB5vMQYkCUhpRSlGgVTegDaBZHQI539uzhP0t1fZQoaAZoCWgPQwjwp8ZLN85fQJSGlFKUaBVN6ANoFkdAjnhoQnQY13V9lChoBmgJaA9DCP59xoUDCSxAlIaUUpRoFUu7aBZHQI6okKG+K0l1fZQoaAZoCWgPQwifceFASPJQQJSGlFKUaBVN6ANoFkdAjqrDFId2gXV9lChoBmgJaA9DCLprCfmgamRAlIaUUpRoFU3oA2gWR0COtgRZlnRLdX2UKGgGaAloD0MI/plBfGA0XUCUhpRSlGgVTegDaBZHQI64pOzposZ1fZQoaAZoCWgPQwifc7frpakvQJSGlFKUaBVNpgFoFkdAjsWUKZ2IPHV9lChoBmgJaA9DCJQ0f0zrcGBAlIaUUpRoFU3oA2gWR0COy/1FH8TBdX2UKGgGaAloD0MIjA+zl22/YkCUhpRSlGgVTegDaBZHQI7XxyXD3uh1fZQoaAZoCWgPQwj4im69JoRkQJSGlFKUaBVNiANoFkdAjtgFsxfv4XV9lChoBmgJaA9DCIoFvqJbG1NAlIaUUpRoFU3oA2gWR0CO2S+sYEW7dX2UKGgGaAloD0MIN9+I7tlxYUCUhpRSlGgVTegDaBZHQI7ZkzsQd0d1fZQoaAZoCWgPQwj/BYIAGTlhQJSGlFKUaBVN6ANoFkdAjucDuKGcnXV9lChoBmgJaA9DCB1WuOUjnVlAlIaUUpRoFU3oA2gWR0CO9DFDv3JxdX2UKGgGaAloD0MIrhIsDucDYUCUhpRSlGgVTegDaBZHQI8Ct8w5/9Z1fZQoaAZoCWgPQwhLOsrBbMJiQJSGlFKUaBVN6ANoFkdAjwZ7LMcIaHV9lChoBmgJaA9DCL4Ts14Mw1hAlIaUUpRoFU3oA2gWR0CPEqJjUd7wdX2UKGgGaAloD0MIy52ZYDjaVUCUhpRSlGgVTegDaBZHQI8THxMFlkJ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db06096bcfa9614ee723f0e845994458fa9624dcc915438497e1f4c9f8b45de7
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd0b7ac5322fb484090c27cad23bbc982ae85cddf5ca54a75cb6e1b01193282f
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abecbeb245ddca00442717cf7ddc6f70726504fb471d87d98e3712deff84d26c
|
3 |
+
size 223295
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 137.6642983452692, "std_reward": 94.84263500131134, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T21:01:42.598437"}
|